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21 Outline

Disposal concepts

How alternative nuclear fuel cycles might change waste forms
requiring deep geologic disposal

How existing safety assessments inform observations about the
impacts of such changes on repository performance (examples
from multiple programs)

Conclusions
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I Deep Geological Disposal for Spent Nuclear3 Fuel and High-Level Radioactive Waste

"There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for
disposal through
geological isolation
of high-level waste
(HLW), including
spent nuclear fuel
(S\ F)."

"Geological disposal
remains the only
long-term solution
available."

National Research Council, 2001
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I4 Status of Deep Geologic Disposal Programs World-Wide

Finland

Sweden

France

Canada

China

Russia

Germany

USA

Granitic Gneiss

Granite

Argillite

Granite, sedimentary rock

Granite

Granite, gneiss

Salt, other

Salt (transuranic waste at the
Waste Isolation Pilot Plant)
Volcanic Tuff (Yucca Mountain)

Construction license granted
2015. Operations application
to be submitted in 2020

License application submitted
2011

Disposal operations planned for
2025

Candidate sites being identified

Repository proposed in 2050

Licensing planned for 2029

Uncertain

WIPP: operating
Yucca Mountain: suspended

Others: Belgium (clay), Korea (granite), Japan (sedimentary rock, granite), UK (uncertain), Spain
(uncertain), Switzerland (clay), Czech Republic (granitic rock), all nations with nuclear power.

Source: Information from Faybishenko et al., 2016
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51 How Repositories Work
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6
I How Might Alternative Nuclear Fuel Cycles
Impact Geological Disposal?

oFor a given amount of electric power, alternative fission-
based nuclear fuel cycles may result in
•Changes in the radionuclide inventory

o Reprocessing can reduce actinide content of final waste product

• Changes in the volume of waste
•Reprocessing can reduce the volume of waste requiring deep geologic disposal

oChanges in the thermal power of the waste
• Separation of minor actinides can reduce therynal pozver of the final waste form

oChanges in the durability of the waste in repository
environments
•Treatment of waste streams can create more durable waste forms

oFor each potential change, consider
oHow will these changes impact repository safety
oHow will these changes impact repository cost and efficiency
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Light-Water Reactor Spent Nuclear Fuel Decay

Example from US Program
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1 Contributors to Total Dose:8 Meuse / Haute Marne Site (France)
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ANDRA 2005, Dossier 2005: Argile. Tome: Evaluation of the Feasibility of a
Geological Repository in an Argillaceous Formation, Figure 5.5-18, million year
model for spent nuclear fuel disposal and Figure 5.5-22, million year model for
vitrified waste disposal

Diffusion-dominated
disposal concept: Argillite

1-129 is the dominant
contributor at peak dose

Examples shown for direct
disposal of spent fuel (left) and
vitrified waste (be(ow)

knives lansl
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I Contributors to Total Dose:
9 Hypothetical Site (Canada)
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NWMO 2013, Adaptive Phased Management: Postclosure Safety Assessment of a
Used Fuel Repository in Sedimentary Rock, NWMO TR-2013-07, Figure 7-96.

10?

Diffusion-dominated
disposal concept: spent
fuel disposal in unfractured
carbonate host rock

Long-lived copper waste
packages and long diffusive
transport path

All waste packages
assumed to fail at 60,000
years for this simulation;
primary barriers are slow
dissolution of SNF and long
diffusion paths

Major contributor to peak
dose is 1-129

SWIFT AND SASSANI 2019 IAEA SPENT FUEL MANAGEMENT CONFERENCE IAEA-CN-272-185



10 I Contributors to Total Dose:
Forsmark site (Sweden)

M
e
a
n
 a
n
n
u
a
l
 e
ff

ec
ti

ve
 d
o
s
e
 (
p
S
v
)
 

101

10-1

10-2

10-2

Ra226 (0.11)

(0.024)1129

(0.019)- Np237

(0.013)- se79

(0.0059)P6210

(0.0039)-Ni59

(0.0031)Ae227

(0.0017)N694

--- Total (0_18)

Dose corresponding to risk limit

Time (years)

Figure 13-18. Far-field mean annual effective dose for the same case as in Figure 13-17. The legends are
sorted according to descending peak mean annual effective dose over one million years (given in brackets

in I.L5V).
SKB 2011, Long-term safety for the final repository for spent
nuclear fuel at Forsmark, Technical Report TR-11-01

Disposal concept with
advective fracture transport
in the far-field: Granite

Long- term peak dose
dominated by Ra-226

Once corrosion failure
occurs, dose is primarily
controlled by fuel
dissolution and diffusion
through buffer rather
than far-field
retardation
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I11 Contributors to Total Dose:
Yucca Mountain (USA)
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dose; 1-129 is approx. 1/10th of total
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12 1

Waste Volume and Thermal Power Considerations
Repository thermal constraints are
design-specific , 0000  

Options for meeting thermal constraints
include

• Design choices including size and spacing
of waste packages

• Operational practices including aging and
ventilation

• Modifications to waste forms
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(from Swift et al., 2010, figure 1)
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Selection of optimal volume and thermal loading
criteria will depend on multiple factors evaluated across

entire fuel cycle, including cost and operational efficiency
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13 1

Waste Volume and Thermal Power Considerations
(cont.)

To a first approximation, waste volume and thermal power density have an
inverse correlation

O All other factors held constant, reductions in volume increase thermal power density
o Relevant metric is disposal volume, i.e., the excavated volume needed per unit volume

of waste, which is a function of repository design as well as waste properties

Volume of HLW is process-dependent

O Existing processes can achieve substantial reductions in disposal volume
. 30-40% of disposal volume relative to spent fuel (including packaging)

. Up to 8% of fuel volume with 100-yr aging period (van Lensa et al., 2010, table 7.1)

o Advanced processes may achieve lower volumes of HLW

Thermal power density of HLW can be engineered over a wide range

O Thermal power correlates inversely to volume without separation of heat-generating
radionuclides

Waste volume does not correlate to long-term performance

O It does affect cost (excavated volume and, ultimately, total number of repositories)
o Volume of low-level waste also contributes to total cost
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14  Waste Form Lifetime Example:
Meuse / Haute Marne Site

HLW
° Base case model: glass "release periods on the order of a few hundred thousand years"
(degradation rate decreases when surrounding medium is saturated in silica: Andra 2005, p.
221)

0 Sensitivity analysis assuming rapid degradation (100s to 1000s of yr) accelerates peak
concentrations at outlet by —200 kyr, modest increase in magnitude of modeled peak dose
For rapid degradation case, modeled releases are controlled by diffusive transport time in clay

Maximum molar llow exitin2 Ca1lovo-Oxfordian (mol/yr) and
maximum dates (yrs.)

Reference Sensitivity

129
1

8.6.10-4
460.000Trs

9.1.104
250_000 irs

36C1
2.2.10

380.000 yrs
3.8.10

190,000 yrs

Table 5.5-24 SEN - Attenuation -1291 and 315 C1 — C1-FC2 — comparison beween the models Vo..S
(Sensitiviv) and th e model Vo.S 9. 17, .

Impact of changes in HLW glass degradation rate on modeled
radionuclide concentrations in groundwater, ANDRA 2005 Table 5.5-24
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Waste Form Lifetime Examples:
15

Forsmark Site

Used fuel

0 Fractional dissolution rate
range 10-6/yr to 10-8/yr

Corresponding fuel lifetimes:
— 1 Myr to 100 Myr

o Dissolution rates for
oxidizing conditions (not
anticipated), up to 10-4/yr

o Uncertainty in fuel

dissolution rate can be a

dominant contributor to

uncertainty in modeled

total dose estimates for

sites with relatively rapid

transport
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Figure 10-44. Sensitivity of the base case result to the find clissohttion rate. Semi-correlated hydro-
geological DFN rnodel for Forsinark. I.,000 realisations of the analytic model for each case.

Source: SKB 2006, Long-term Safety for KBS-3 Repositories at Forsmark
and Laxemar—a First Evaluation, TR-06-09, section 10.6.5

Also, SKB 2006, Fuel and Canister Process Report for the Safety
Assessment SR-Can, TR-06-22, section 2.5.5
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16 I Conclusions

For all disposal concepts, potential benefits of alternative fuel cycle choices
will be considered in the context of operational costs and benefits

Alternative fuel cycle choices can reduce waste volume
O Without century-scale surface aging of fission products, reductions in disposal
volume may be limited to 30-40% of the disposal volume of the unprocessed fuel

Alternative fuel cycle choices will have little impact on thermal load
management without century-scale aging of fission products
O Fission products may need geologic disposal regardless, depending on regulatory
criteria

The impact of long -lived waste forms on repository performance varies
with disposal concept
O For some disposal concepts, long-lived waste forms can be important

Alternative fuel cycle choices will have little impact on estimates of long -
term repository performance
O Long-term dose estimates in most geologic settings are dominated by mobile
species, primarily 1-129
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