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2 A Need for Grid-Scale Energy Storage Research

Renewable/Remote Energy Grid Reliability National Defense

Electricity Storage Capacity in the United States,

by Type of Storage Technology

25.2 GW U.S. storage capacity

Pumped hydro

94%
Other 6%

1,574 lkMN other storage

Thermal storage

669 MW

Battery

733 MW

Emergency Aid

Compressed air

114 fv1W

Flywheel

58 MW 1

Source: DOE Global Energy Storage Database http://www.energystorageexchange.org/ March, 2018



3 Battery-based Energy Storage: Room to Grow!

Electricity Storage Capacity in the United States,

by Type of Storage Technology

25.2 GW U.S. storage capacity

Pumped hydro

94%

Other 6%

1,574 MW other storage

Thermal storage

669 MW

Battery

733 MW

Compressed air

114 M W

% of in service U.S. Generation Capacity

0.07% Battery Energy Storage

2.2% Battery Energy Storage and Pumped Hydro Storage

Flywheel

38 MW

Source: DOE Global Energy Storage Database http://www.energystorageexchange.org/ March, 2018



4 Flow Batteries Using Electroactive Fluids

lonic Liquid Flow Batteries: High energy densities possible through
increased active species concentrations and and larger voltage windows.
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5 
Promise in Molten Sodium Batteries

Sodium-based batteries 

• 6th most abundant element on earth.

• 5X the annual production of aluminum.

• Proven technology base with NGK

Sodium —Sulfur (NaS) Technology.

• Favorable battery voltages (>2V)

• Utilizes zero-crossover solid state

separators.

lon Conducting
Ceramic
Separator

Traditional Na-Batteries operate at -300°C

• Improves separator ionic conductivity

• Maintains molten phase chemistry

• Increases Cost

• Complicates Material Packaging

• Limits Battery Lifetime

• Introduces Freeze-thaw Hazards/Costs

"Molten
Catholyte"
• Sulfur
• M-Halide Salts

Na-NiCULell - 2.6V) 

2Na + NiCl2 F4 2Na+ + 2C1- + Ni(s)

Na-S (E„ll - 2V) 

2Na + 4S F4 Na2S4



Low Temperature Operation of a Molten Na
6 Battery is Tremendously Enabling

➢ Improved Lifetime
• Reduced material degradation
• Decreased reagent volatility
• Fewer side reactions

>. Lower material cost and processing
• Seals
• Separators
• Cell body
• Polymer components?

>. Reduced operating costs

>. Simplified heat management costs
• Operation
• Freeze-Thaw

Low Temperature
lon Conducting
Ceramic

Low T°C
Molten Salt
Catholyte

$500.00

$400.00

$300.00

° $200.00c.>

$100.00

$0.00

Installed Cost Estimate

Original NaS LowTemp NaS

•Txfmr Install

•Txfrnr

•PCS Install

o PCS

• Battery Install

•Battery Eqpt

Gao Liu, et al. "A Storage Revolution." 12-Feb-2015 (online):
https://ei.haas.berkeley.edu/education/c2m/docs/Sulfur%20and%
20Sodium%20Metal%20Battery.pdf

1

300°C

1 00°C



7 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

Molten Sodium

2Na+ ---- ----- ----

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii= 3.24V



8 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

Molten Sodium

2Na+

11110e Prcc1M

Molten Halide Salt

How important

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii= 3.24V



Catholytes are Key to Low Temperature
9 Operation

We envision that cycle life will be determined through
1) use of a zero-crossover separator (e.g., NaSICON orr3"- A1203)
2) maintaining a fully liquid catholyte

A fully molten catholyte avoids
a) Particle-hindered electrochemical processes
b) Particle-related loss of capacity

9 = Current Density at
- +3.05 V vs. Na/Na+

u 7 - 150 °C
itt 6

5
(T)

'E 3 Solidtcli' 2
AICI3

u
present

•
•

0 10 20 30 40 50 60
Nal mai %

Reactant

r or 13-

Crystals

///////////7 

Electrode Surface

Current Density is
significantly lower when
solid secondary phases are
present.

S. Percival, L. Small, and E.D. Spoerke. J.
Electrochem. Soc., 165 (14) A3531-A3536
(2018)



1 Catholytes are Key to Low Temperature
10 Operation

We envision that cycle life will be determined through
1) use of a zero-crossover separator (e.g., NaSICON orr3"- A1203)
2) maintaining a fully liquid catholyte

A fully molten catholyte avoids
a) Particle-hindered electrochemical processes
b) Particle-related loss of capacity

Nal-AICI3 at 150°C

Reactant

i 
1- or 13-

-) )c-r:ls
////////////

Electrode Surface

Nal-AICI3 and Nal-AIBr3 salts at 90°C

35 mol% Nal-AICI3

Molten Nal-AIBr3 composition range spans 5-25% Nal and cell voltage is near or above 3V.



11 Nal-AIBr3: A Low Temperature Molten Catholyte

The Nal-AIBr3 catholyte
system exhibits excellent
electrochemical behavior at
reduced operating
temperatures.

> 25:75 Nal-AIBr3 salt completely
molten  at 90 °C

> Larger fully molten capacity
range (-5-25 mol% Nal)

Samples at 90°C

)=. Carbon Fiber microelectrode shows excellent
electrochemical behavior of 25 mol% Nal-AIBr3 at 90°C

-0.5

_____.....3/1-413- +2e-

100mV/s

2 4

1.25  
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.1
—2 0.25 -
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-0.25 -

-0.75  

1.4

2.6 2.8 3 3.2 3.4
E / V (vs. Na/Nal

3.6 3.8 4

1.8 2.2 2.6 3 3.4
E / V (vs Na/Nal

)>. Nal-AIBr3 system shows good iodide electrochemical
reversibility.
• AIBr3 (20mol% Nal) system at 120 °C and 1V/s



12 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

2e-

1 Molten Sodiumma+ -

An do

Mir ProCOM

olten Halide Salt.-gi'•
„,

2Nal
4.5s5z.Mvigi5.

Key Qualities of NaSICON Ceramic Ion
Conductors
•

•

Na3Zr2PSi2012

High Na-ion conductivity (>10-3 S/cm at 25°C)

• Chemical Compatibility with Molten Na and
Halide salts

• Zero-crossover

6

4

5 2

-6

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°c,ii= 3.24V

• • •• •• 
••.•
•
•

•

•
•

• NaSICON
p" Alumina

.

1.5 2 2.5 3 3 5
1000/T (K-1)

Small and Spoerke, et al. J. Power Sources. 360. 569-574.



13 Low Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

2.5

Molten Sodium

2Na+ ------ ---- ----- ----

Ano clod

111111fte

Molten Halide Salt

------
13- 'S.:15,15....%Ve

-lee; '

It

OCP = 3.32V

0 10 20

Time / Hr

30

Battery cycling
at 110°C!

25 mol% Nal-AIBr3
with NaSICON

separator.

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii = 3.24V
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How low can we go?



15 Lowes1 Temperature Molten Na-Nal Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na+-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.
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Battery cycling
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with NaSICON

separator.

Na-Nal battery: 

Na 4 Na+ + e- E° = OV
13- + 2e- 4 31- E° = 3.24

2Na + 13- 4 2Na+ + 31- E°ceii = 3.24V
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16 Separator Treatment Affects Cell Performance

First, clearing roughening the NaSICON surface with a surface polish allowed
higher operating current density and lower overpotentials.

5

4.5

>--.... 4
a.)
to
co
t 3.5
>

2.5

.....,,,r.,

'Ns

- Not Polished

Polished

1 1 1
0 5 10 15 20 25 30 35 40

Time / Hr

• Not polished NaSICON battery operated at ± 0.299 mA current C/12 1% DOD
• Polished NaSICON battery operated at ±0.897mA C/4 1% DOD
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17 Separator Treatment Affects Cell Performance

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated at
100-200°C for
30 minutes



18 Separator Treatment Affects Cell Performance

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated at
100-200°C for
30 minutes

-7

Heated above
380°C for 30
minutes



19 Separator Treatment Affects Cell Performance

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated at
100-200°C for
30 minutes

Based on treatments applied to
NaSICON in a solid-state system, the
change in pellet surface is believed due
to formation of an amorphous, reduced
NaSICON surface.

W. Zhou, et al. ACS Cent. Sci. (2017) 3, 52-57.

Heated above
380°C for 30
minutes
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20 Separator Treatment Affects Cell Performance

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated below
200°C for 30
minutes

4.3

Heated above
380°C for 30
minutes

Na-treated NaSICON shows lower overpotentials on battery cycling.

Polished Na5ICON

4.05 -
—Na Baked NaSICON

> 3.8

,y 3.55

> • 3.3

3.05
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11p
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Battery cycling
at 110°C!

25 mol% Nal-AIBr3
with NaSICON

separator.
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• Na Baked NaSICON
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• • •

4 8 12
Cycle #

• Polished NaSICON battery operated at ±0.897 mA C/4 1% DOD
• Na Baked NaSICON battery operated at ±0.894 mA C/4 1% DOD

16 20



Will this be good enough?
(No pun intended)



22 Composite Separator Innovation

Composite separators could enable thinner (higher conductance), mechanically
robust separators.

Initial Approach 

• Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed
together

• Tough composite with reasonable distribution of NaSICON
• Good interfaces between NaSICON and polymer

➢ Impractically low ionic conductivity (4x10-10). Poor
connectivity of Na-conductive NaSICON is evident in
cross-sectional elemental mapping.



23 Composite Separator Innovation •

Composite separators could enable thinner (higher conductance), mechanically
robust separators.

Initial Approach 

• Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed
together

• Tough composite with reasonable distribution of NaSICON
• Good interfaces between NaSICON and polymer

➢ Impractically low ionic conductivity (4x10-10). Poor
connectivity of Na-conductive NaSICON is evident in
cross-sectional elemental mapping.

Na

Die body

An alternative approach 

• NaSICON chips (1mm thick)
enveloped in PVDF powder and
warm-pressed

• NaSICON chips provide
continuous conductive path
through separator

plunger

Conductivity is
determined by
NaSICON ceramic.

6RT -0.5 mS/cm for composite!



24 Take Away Messages

• Batteries are significantly under-represented in grid-scale electrical
energy storage.

• Low temperature molten sodium batteries offer promise for safe, cost
effective, long-life grid scale energy storage.

• Molten state anodes and catholytes are expected to improve battery
performance, but require attention to materials chemistry.

• Separator performance is important and may be affected by significant
interfacial interactions with molten components. Surface preparation of
NaSICON will affect battery performance
• Cleaning/polishing
• High temperature Na-treatment

Continued materials development, and specific emphasis on intelfaces, will
be key to developing a new generation of molten-sodium batteries!
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28 Flow Batteries - Using Electroactive Fluids

Ionic Liquid RFB Prototype

FY14 Focus: Non-aqueous
electrolyte/membrane compatibility

(2 Sandia
National
laborataiies
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29 Challenges with Existing Na-Batteries

Na-NiC121Lell - 2.6V) 

2Na + NiCl2 2Na+ + 2CI- + Ni(s)

• High temperature operation (typically > 270°C)
• Cycle lifetime (solid cathode phase)
• Cost (related to cycle lifetime and material costs)

Particle
Coarsening

11111111.

117

Na-S (E„ll - 2V) 

2Na + 4S Na2S4

• Safety: Violent, toxic reactions between molte
Na and molten S - cascading runaway!

• Corrosive, toxic chemistries
• High temperature operation (270-350°C)



30 Composite Separator Innovation

Composite separators could enable thinner (higher conductance), mechanically
robust separators.

Initial Approach 

• Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed
together

• Tough composite with reasonable distribution of NaSICON
• Good interfaces between NaSICON and polymer

➢ Impractically low ionic conductivity (4x10-10). Poor
connectivity of Na-conductive NaSICON is evident in
cross-sectional elemental mapping.



31 Hazards of Poor Material Selection

Polymer incorporation highlights the
importance of careful material section.

Compatibility must be considered for:
• Molten sodium
• Molten halide catholyte salts
• Non-ambient temperatures
• Electrochemical reactions
• Temperature
• Mechanical Properties (toughness,

compliance, hermeticity, etc.)

Magnesium metal and Teflon (PTFE) are
elements of decoy flares...Sodium has a
similar reactivity.

Molten sodium and fluoropolymers should
not be considered stable, especially for
long-term use.

Thermal and mechanical stability

Chemical compatibility



32 Composite Separator Innovation •

Composite separators could enable thinner (higher conductance), mechanically
robust separators.

Initial Approach 

• Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed
together

• Tough composite with reasonable distribution of NaSICON
• Good interfaces between NaSICON and polymer

➢ Impractically low ionic conductivity (4x10-10). Poor
connectivity of Na-conductive NaSICON is evident in
cross-sectional elemental mapping.

Na

Die body

•

An alternative approach 

• NaSICON chips (1mm thick)
enveloped in PVDF powder and
warm-pressed

• NaSICON chips provide
continuous conductive path
through separator

plunger

PVDII sheet

!NM

NlaSI N

MEW sheet
Kaptcan refer

"NO -

Conductivity is
determined by
NaSICON ceramic.

6RT -0.5 mS/cm for composite!


