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Introduction — Silicon Anodes

Silicon 1s an alternative anode to the traditionally
employed graphite, offering dramatically
increased capacity.

However, silicon undergoes dramatic volume
change durin Cﬁcling and exhibits poor surface
passivation. Both of these contribute to poor
cycle life for silicon anodes.

Mitigation approaches to realize practical
application of silicon anodes included
> Composites

° Nano
o Surface functionalization / artificial SEI
> Binders



Introduction - Microcalorimetry

TA Instruments
TAM IV with three
microcalorimeter
options
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This work focuses upon the use of the 20mL
microcalorimeter to measure 1sothermal
calorific output of silicon slurry pre-mixes
soon after combination
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4 | Microcalorimetry of Battery Electrodes 1 |
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Reactivity in Processing

Traditional PVDF binders are not conductve to good performance of Si
electrodes and from and environmental and safety perspective there is a
desire to move away from NMP as a solvent. Instead, aqueous binder systems
such as CMC or LiPAA are employed for silicon anodes.

Through this modification of processing observations of slurry gassing have
been observed and reported on during scale-up efforts.

K.A. Hays, B. Key, J. Li, D. Wood, and G.M. Veith. J
Phys Chem C 122 (2018) pp 9746-9754.
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6 | Testing Method

LiPAA binder
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7 | Materials Investigated

Premix slurries of 10wt% solution LiPAA (pH ~6.5) in DI water combined with nanosilicon and
(sometimes) carbon black

83.8% Water \ \‘ 82.9% Water
9.7% Si 9.6% Si
6.5% Binder 6.4% Binder
1.1% CB
B Water Si mLiPAA M Carbon Black 3
Nominal Particle BET Surface 21000 21000
Size, nm Area, m?/g i 100 i 100
51 1000-5000 5.91 2 =
8 10 8 10 |* = 2
52 500 7.19 g g
53 150 33.64 £ £
0 200 400 600 800 1000 0 1000 2000 3000 4000 5000 6000
S4 70-130 11.99 Nominal Particle Diameter, nm Nominal Particle Diameter, nm

S5 30-50 34.97



8 I Assumed Reactions From Processing
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K.A. Hays, B. Key, J. Li, D. Wood, and G.M. Veith. J
Phys Chem C 122 (2018) pp 9746-9754.
Reaction: Si + 2 H,O = §10, + 2 H, Literature support for increased oxidation of Si
AHg,, = -287.8 kJ /mol and evolution of hydrogen gas after aqueous
mixing.

Assume full conversion to S10,, no SiO, phases
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10 | Impact of Carbon Black on Reaction Severity
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Hays et. al. reported dramatic increase in
reactivity during processing with the
addition of carbon black, thought to
facilitate electron transfer between water
and the silicon particle cores
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11 | Total Energy Loss from Processing
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For S5 (30-50nm) sample the signal strength dramatically outweighed any residual heat from sample
introduction to the chamber so the actual signal was used to measure heat generation for the
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2 ‘ Quantification of Silicon Degradation i) |
S3 (150nm) + CB + LiPAA S5 (30-50nm) + CB + LiPAA !
Duration | Total SiO, formed Si Spec1f1c Duration | Total SiO, formed Si Loss Spec1f1c
0 hr 0% 100% 0 hr 0% 100%
24 hr 16.52 5.7409e-5 0.79% 98.31% 24 hr 105.55 .000366 5.04%  90.30%
48 hr 23:37 8.2461e-5 1.13% 97.58% 48 hr 185.96 .000646 8.88% 84.07%
96 hr 33.66 .000117 1.61% 96.57% 96 hr 285.26 .000991 13.63% 77.39%

Sample sizes of approximately2g slurry

> At approximately 10% nSi loading translates
to ~0.2g silicon per sample

For S3 (150nm) material the predicted performance impactis quite small,

remaining below 4% predicted loss even after 4 days aging

For the more reactive S5 (30-50nm) material the impact is more significant,
approaching 25% losses at 4 days aging;

Worth noting is that the rate of reaction for actively mixing vs static aging would
likely be appreciably higher.



13 ‘ Quantification of Gas Generation During Degradation

S3 (150nm) + CB + LiPAA S5 (30-50nm) + CB + LiPAA
H, formed H, formed | H, formed H, formed H, formed | H, formed
(mol) (mL - RTP) | (mL/g-Si) (mol) (mL - RTP) | (mL/g-Si)
0 hr 0 0 0 0 hr 0 0 0
24 hr .000115 2.76 13.62 24 hr .000733 17.59 86.82
48 hr .000165 3.96 19.54 48 hr .001292 31.01 153.06
96 hr .000234 5.62 27.74 96 hr .001982 47.57 234.80

For similar material in literature:

» N2/N1 =P2/P1=1.44

» 0.5L=20.83 m-mol at RTP =
9.17 m-mol H, formed at 100hr

» Roughly 220 mL of gas generated

Post analysis images of S3 + CB + LiPAA (left) > H, generation of roughly 22 S Mixi:zm,cf:m, S

and S5 + CB + LiPAA (right) with greater mL/g-5i, in agreement with our Hays, B. Key, J. Li, D. Wood, and

: : G.M. Veith. J Phys Chem C 122 (2018) pp
observation of gassing for S5 sample values o e

APressure (atm)




14 | Aging of Electrodes for Electrochemistry i

The same silicon slurry pre-mix as analyzed via
microcalorimetry was prepared and coated at Ohr, 24hr, and
96hr after initial mixing;

S5 silicon was selected as it had the greatest measured 56.1% S? Si |
reaction within the slurry and should therefore have the most 37.4% Binder
easily quantified impact on electrochemical performance. 6.5% CB

Electrodes were coated on copper foil and assembled into

half-cells vs lithium foil. ®mSi mLPAA mCarbon Black

Ohr Aged 24hr Aged 96hr Aged




15 | Measured Performance Impact
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ged Time e
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Supporting Characterization — Raman Spectroscopy
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Raman analysis shows anticipated
peak at 520 cm™! corresponding to
crystalline silicon. No peaks for
amorphous silicon are present.

S10, associated peaks can be
observed from 250 — 450 cm™! and
925 — 975 cm™!, but the signal is too
weak to quantify growth of Si0,
with aging
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Summary and Conclusions

Measurable and appreciable reactions occur when preparing silicon-containing anodes in aqueous
binder systems, assumed (with literature support) to be the oxidation of Si to SiO,, with concurrent
evolution of H,. The severity of reaction tends to increase with larger surface area / smaller particle
size silicon materials. The incorporation of conductive carbon into the slurry samples 1s not
observed to significantly impact the reaction.

Total energy generation from reaction predicts up to 22.6% capacity loss for more reactive materials
after 96hrs of aging. Electrochemical data partially supports this prediction, though additional testing
and secondary analysis 1s needed to fully confirm.
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Future Work

Additional characterization of silicon samples to both confirm SiO, formation / rates of reaction and
identify surface differences that may explain different severity of reactions between materials.

Incorporate electrolyte introduction and perfusion analysis to capture reactions between pristine
and/ or lithiated silicon electrodes and electrolytes.

In-situ electrochemical analysis to capture different reaction / degradation processes during silicon
electrode cycling.

=
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