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2 I Introduction — Silicon Anodes

Silicon is an alternative anode to the traditionally
employed graphite, offering dramatically
increased capacity.

However, silicon undergoes dramatic volume
change durin,g cycling and exhibits poor surface
passivation. Both of these contribute to poor
cycle life for silicon anodes.

Mitigation approaches to realize practical
application of silicon anodes incruded
° Composites

° Nano

Surface functionalization / artificial SEI

Binders



3 I Introduction - Microcalorimetry

TA Instruments
TAM IV with three

microcalorimeter
options

Gas/liquid inlet
GE s/liquid outlet

4 mL calorimeter
• +/- 200 nW precision
• Isothermal testing
• Gas/liquid perfusion

110

20 mL calorimeter
• +/- 300 nW precision
• Isothermal testing

125 mL calorimeter
• +/- 3 pW precision
• Isothermal testing
• Battery cycling
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4 Microcalorimetry of Battery Electrodes

Cumulative specific capacity (rnAh/g)
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5 Reactivity in Processing

Traditional PVDF binders are not conducive to good performance of Si
electrodes and from and environmental and safety perspective there is a
desire to move away from NMP as a solvent. Instead, aqueous binder systems
such as CMC or LiPAA are employed for silicon anodes.

Through this modification of processing observations of slurry gassing have
been observed and reported on during scale-up efforts. K.A. Hays, B. Key, J. Li, D. Wood, and G.M. Veith. J

Phys Chem C 1 22 (2018) pp 9746-9754.



6 I Testing Method

LiPAA binder
mixture

LiPAA binder with
nSi

LiPAA binder with
nSi and CB

• Slurry with no
heat generation

• Heat generation from nSi
• Vary nSi and correlate with
surface chemistry/BET area

• Impact of CB inclusion on
nSi reactivity
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7 I Materials Investigated

Premix slurries of 10wt% solution UPAA (pH —6.5) in DI water combined with nanosilicon and
(sometimes) carbon black

83.8% Water
9.7% Si
6.5% Binder

82.9% Water
9.6% Si
6.4% Binder
1.1% CB

•Water Si • LiPAA • Carbon Black
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Silicon Nominal Particle
Size, nm

BET Surface
Area, m2/g

S1 1000-5000 5.91

S2 500 7.19

S3 150 33.64

S4 70-130 11.99

S5 30-50 34.97

0 200 400 600 800

Nominal Particle Diameter, nm

1000 1000 2000 3000 4000 5000 6000

Nominal Particle Diameter, nm



8 I Assumed Reactions From Processing

H2

H20 %...)

Si02

==

Silicon interior with growing Si02 shell

Reaction: Si + 2 H20 = Si02 + 2 H2

— -287.8 kJ/mol

Assume full conversion to Si02, no SiOx phases
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Phys Chem C 122 (2018) pp 9746-9754.

40 50

literature support for increased oxidation of Si
and evolution of hydrogen gas after aqueous
mixing.



9 I Measured Heat Generation of Silicon Pre-mix Slurries
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10 I Impact of Carbon Black on Reaction Severity
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11 I Total Energy Loss from Processing Degradation
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12 Quantification of Silicon Degradation

S3 (150nm) + CB + LiPAA S5 (30-50nm) + CB + LiPAA

Duration Total
Energy (J)

Si02 formed
(mol)

Si
Loss

Specific
Capacity

Duration Total
Energy (J)

Si02 formed
(mol)

Si Loss Specific
Capacity

0 hr 0 0 0% 100% 0 hr 0 0 0% 100%

24 hr 16.52 5.7409e-5 0.79% 98.31% 24 hr 105.55 .000366 5.04% 90.30%

48 hr 23.37 8.2461e-5 1.13% 97.58% 48 hr 185.96 .000646 8.88% 84.07%

96 hr 33.66 .000117 1.61% 96.57% 96 hr 285.26 .000991 13.63% 77.39%

Sample sizes of approximately2g slurry
At approximately 10% nSi loading translates
to —0.2g silicon per sample

For S3 (150nm) material the predicted performance impact is quite small,
remaining below 4% predicted loss even after 4 days aging

For the more reactive S5 (30-50nm) material the impact is more significant,
approaching 25% losses at 4 days aging.

Worth noting is that the rate of reaction for actively mixing vs static aging would
likely be appreciably higher.



13 I Quantification of Gas Generation During Degradation

S3 (150nm) + CB + LiPAA

Duration H2 formed
(mol)

H2 formed
(mL - RTP)

H2 formed
(mL/g-Si)

0 hr 0 0 0

24 hr .000115 2.76 13.62

48 hr .000165 3.96 19.54

96 hr .000234 5.62 27.74

Post analysis images of S3 + CB + LiPAA (left)
and S5 + CB + LiPAA (right) with greater
observation of gassing for S5 sample

S5 (30-50nm) + CB + LiPAA

Duration H2 formed
(mol)

H2 formed
(mL - RTP)

H2 formed
(mL/g-Si)

0 hr 0 0 0

24 hr .000733 17.59 86.82

48 hr .001292 31.01 153.06

96 hr .001982 47.57 234.80

For similar material in literature:
➢ N2/N1 = P2/P1 = 1.44
➢ 0.5L = 20.83 m-mol at RTP =

9.17 m-mol H2 formed at 100hr
>. Roughly 220 mL of gas generated
➢ H2 generation of roughly 22

mL/g-Si, in agreement with our
values
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G.M. Veith. J Phys Chem C 1 22 (2018) pp
9746-9754.



14 I Aging of Electrodes for Electrochemistry

The same silicon slurry pre-mix as analyzed via
microcalorimetry was prepared and coated at Ohr, 24hr, and
96hr after initial mixing.

S5 silicon was selected as it had the greatest measured
reaction within the slurry and should. therefore have the most
easily quantified impact on electrochemical performance.

Electrodes were coated on copper foil and assembled into
half-cells vs lithium foil.

Ohr Aged

A -aft
OM

24hr Aged 96hr Aged

.•4 =emu t-

.2 4i.

56.1% S5 Si
37.4% Binder
6.5% CB

Si LiPAA • Carbon Black



1 5 I Measured Performance Impact
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Initial lithiation curves also suggest more resistance at
active surfaces due to deeper initial voltage. Also suggests
that formed Si02 is not electroactive due to shrinking
capacity at higher voltages and minimal change to
coulombic efficiency
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1 6  Supporting Characterization — Raman Spectroscopy

Raman analysis shows anticipated
peak at 520 cm-1 corresponding to
crystalline silicon. No peaks for
amorphous silicon are present.

0 8

c • 0 6 Si02 associated peaks can be
observed from 250 — 450 cm-1 and

`2 0 4

925 — 975 cm-1, but the signal is too
0 2 weak to quantify growth of Si02
0 with aging
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1 7 I Summary and Conclusions

Measurable and appreciable reactions occur when preparing silicon-containing anodes in aqueous
binder systems, assumed (with literature support) to be the oxidation of Si to Si02, with concurrent
evolution of H2. The severity of reaction tends to increase with larger surface area / smaller particle
size silicon materials. The incorporation of conductive carbon into the slurry samples is not
observed to significantly impact the reaction.

Total energy generation from reaction predicts up to 22.6% capacity loss for more reactive materials
after 96hrs of aging. Electrochemical data partially supports this prediction, though additional testing
and secondary analysis is needed to fully confirm.



1 8 I Future Work

Additional characterization of silicon samples to both confirm Si02 formation / rates of reaction and
identify surface differences that may explain different severity of reactions between materials.

Incorporate electrolyte introduction and perfusion analysis to capture reactions between pristine
and/or lithiated silicon electrodes and electrolytes.

In-situ electrochemical analysis to capture different reaction / degradation processes during silicon
electrode cycling.
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