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What Are We Doing?
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Brine Availability Test in Salt at WIPP (BATS)

Monitoring brine distribution, inflow, and chemistry
from heated salt using geophysical methods
and direct liquid & gas sampling.

Boreholes drilled Feb-Apr 2019 in WIPP underground, testing begins
July 2019, into FY20. Shakedown equipment tests ongoing.



Brine in Salt
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• No flowing groundwater, but not dry wt-% water)

• Water sources in salt
1. Hydrous minerals (e.g., clay, bassanite)

2. lntragranular brine (fluid inclusions)

3. lntergranular brine (interconnected pores)

• Brine content correlates with clay content

• Only intergranular brine moves under pressure gradient

• Water types respond differently to heat
• Hydrous minerals evolve water vapor, which can become brine

• lntragranular brine migrates under thermal gradient

• Brine types have different chemical / isotopic composition

Q: How do 3 water types contribute to Brine Availability?



Importance to Safety Case
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Brine Availability: Distribution of brine in salt & how it
flows to excavations or boreholes

• Initial conditions to post-closure safety assessment
• Brine migration and re-distribution

• Evolution of disturbed rock zone (DRZ) porosity and permeability

• Brine causes corrosion of waste package / waste form

• Brine is primary radionuclide transport vector

• Liquid back-pressure can resist drift creep closure



WIPP Context

Brantley
Lake

Carlsbad
Cavern

Nall al
Park

/Pc j ;D. =.43

a Pecos
Rive

EVAPP Site

TO Al

New Mexlco

Texas w+I

El
ev
at
io
n 
(
m
)
 

SW

1000

750

500

250

Sea
Level

-250

Ground Suface

Gatuna Formation

ArJ,Ayr gwJ'Aw*Ti.',4064r  www
.. 62:542:021

Culebra Magenta
- 

--------- 

-----------

Rustler-Salado Contact
-----------------

-

P_o.t! - - ----------------

USIGERMAN WORKSHOP
Solt Rep...,

or.ra.r,

Surficial Deposits
Dockum
 Group 

NE

Dewey Lake
Red Beds

Rustler
Formation

— Repository Level

Sand and Sandstone

Siltstone and Sandstone

Mudstone and Siltstone

[ ///1

L

Salado
Formation

Castile Formation

Bell Canyon
Formation

Anhydrite

Halite

Limestone

6



BATS Test in WIPP DRZ

Cartoon representation of test interval

relative to observed DRZ at WIPP
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BATS Test Instrumentation

• Two identical arrays
• Heated (120 C) and Unheated

• Behind HP packer (right)
• Circulate dry N2

■ Quartz lamp heater (750 W)

• Borehole closure gage

• Gas permeability before / after

• Samples / Analyses
• Cores (X-ray CT and fluorescence at NETL)

• Gas stream (natural / applied tracers, humidity and isotopes)
• Liquid brine (natural chemistry and natural / applied tracers)

• Geophysics
■ 3 x Electrical resistivity tomography (ERT)
■ 3 x Acoustic emissions (AE) / ultrasonic travel-time tomography

■ 2 x Fiber optic distributed strain (DSS) / temperature (DTS) sensing
• +100 thermocouples
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• Brine composition samples / H20 isotope data
• Measure change in brine sources with temperature

• Geophysics
• Map 4D evolution of saturation / porosity / permeability

• Temperature distribution
• More brine available at high temp (inclusions + hydrous minerals)

• Thermal expansion brine driving force

• Salt dry-out near borehole

• Gas permeability and borehole closure
• Thermal-hydrological-mechanical evolution of salt during heating

• Tracer migration through salt
• Estimate rate of brine / vapor movement through salt DRZ

• Post-test overcoring
• Cement seal, tracer distribution around source, damage



Brine Inflow

• Brine inflow
• Highest inflow rate initially

• Exponential decay of rate with time

• More brine inflow at higher temperatures
• Vapor from dehydration of clay & gypsum

• Brine from fluid inclusions

• Three forms of water contribute
• Can we discern chemically/isotopically?

Kuhlman et al. (2017)
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Brine Composition

• Liquid brine samples

• Distinguish sources of water in salt?
• Distinct endmembers

• Added liquid tracers
• NaRe04

• Fluorescent tracer

• Data on processes:
• Advection

• Reaction

• Diffusion

0.6

US/CERMAN WORKSHOP
5alt RePOSItOry .esea.ch,

Desig,&Opelabon

0 r..„Tr

A
ESPEC

ENERGY

Dissolved WIPP salt

0.5 -

0.4

0.1

0.0

• Group 1a inclusions [S&K]

O Group 2a inclusions [S&K]

• E140 Feb/2017

• E140 May/2018

MB139 [Dorn]

O MB140 [Dorn]

O MUO [D95]

• GSEEP [D95]

A swater [Mol]
* up

ea

boreholes [D95]

down boreholes [D95]

* horiz boreholes [D95]

MB139 evap [K]

QQ
•

•
■

•

o o

❑

*
❑

0

❑ Te

❑

❑

wjpp
4 ilfs,

•/40
u- • if -

0 WIPP 
MB-139

Qt.&

•
• I
•

sample4

koe 

o0o
at‘o

'e
 
dosog 

elapov

o

0 0 0 2 0 4 0.6

K+/Mg++ (weight ratio)

0:8 1.0



GAS COMPOSITION sun 
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• Gases enter borehole from

• Dissolved gas in brine (-15 MPa pore pressure in far field)

• Geogenic gases from salt (e.g., He & Ar)

• Added gas tracers (Xe, Ne, Kr & SF6)

Water Vapor from brine
• Natural H20

• Isotopically spiked water
breakthrough
• Transport time through salt

• Fractionation in borehole

Analyze gases real-time
• Mass spectrometer

• H20 / CO2 infrared analyzer

• Picarro water isotope analyzer

SRS quadrupole mass spec gas analyzer

• Site 1 (-195°C) Asse Gas Composition
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ERT / AE Expectations

• Electrical Resistivity Tomography (ERT)
• ERT electrodes cemented into 3 boreholes

• Salt apparent resistivity

• Reisitivity: reveal porosity and brine saturation

• Conduct 3D ERT surveys through time
• Estimate evolution of porosity / saturation

• Acoustic Emissions (AE)
• AE monitoring (especially during heat up & cooldown)

• Locate AE sources near heated borehole
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Salt Annulus Cement Plug

• Emplace Pre-fabricated Cement Plug
• Snug fit into satellite borehole

• Tubing embedded in plug (perm. test)

• Monitor seal evolution as borehole closes

• Parallel tests: ambient + heated conditions

• Upscale GRS Lab Seals Tests
• GRS test monitored permeability evolution

• We will implement at borehole scale

• Overcore Post-test to Analyze Interfaces

• Collaboration with GRS
• Use same cement formulas in field as lab experiments

• Send WIPP salt and brine recipe to GRS for lab experiments

Czaikowski & Wieczorek (2016)
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Proposed DECOVALEX Task
• DECOVALEX 2023: Proposed Task H
• Construction/Testing

• New boreholes cored/driled Feb-Apr 2019
• Test constructed/installed in new boreholes (June 2019)
• Heated test conducted for -6 months (two phases)
• Unheated test conducted -12 months

• 2019: Initial test execution
• 2020: Distribute initial test data
• 2021: Simulate single processes (+ thermal)

• Brine production, D20 transport
• Thermal-Hydrologic, Thermal-Mechanical, Thermal-Chemical
• Follow-on test data available

• 2022: More coupled processes
• Salt permeability/porosity as a function of damage

• 2023: Include data from ERT/AE/brine composition
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• Interested Parties
• US (SNL, LANL, LBNL), Germany (BGR, GRS), UK (RWM), Netherlands
(COVRA)
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