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What Are We Doing?
Brine Availability Test in Salt at WIPP (BATS)

KSHOP

Monitoring brine distribution, inflow, and chemistry
from heated salt using geophysical methods
and direct liquid & gas sampling.

Boreholes drilled Feb-Apr 2019 in WIPP underground, testing begins
July 2019, into FY20. Shakedown equipment tests ongoing.
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New BATS core




Brine in Salt

= No flowing groundwater, but not dry (< 5 wt-% water)

= \Water sources in salt Fluid
1. Hydrous minerals (e.g., clay, bassanite)
2. Intragranular brine (fluid inclusions)
3. Intergranular brine (interconnected pores)

* Brine content correlates with clay content
* Only intergranular brine moves under pressure gradient
= Water types respond differently to heat

» Hydrous minerals evolve water vapor, which can become brine
» [ntragranular brine migrates under thermal gradient

* Brine types have different chemical / isotopic composition

Q: How do 3 water types contribute to Brine Availability?
D



Importance to Safety Case
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Brine Availability: Distribution of brine in salt & how it
flows to excavations or boreholes

= |nitial conditions to post-closure safety assessment
= Brine migration and re-distribution
= Evolution of disturbed rock zone (DRZ) porosity and permeability

* Brine causes corrosion of waste package / waste form
= Brine is primary radionuclide transport vector
» Liquid back-pressure can resist drift creep closure




WIPP Context
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BATS Test in WIPP DRZ

Cartoon representation of test interval
relative to observed DRZ at WIPP
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BATS Test Instrumentation
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» Heated (120 C) and Unheated

- Behlnd HP packer (right)
Circulate dry N,
*  Quartz lamp heater (750 W)
= Borehole closure gage
= Gas permeability before / after

= Samples/ Analyses
= Cores (X-ray CT and fluorescence at NETL)
= Gas stream (natural / applied tracers, humidity and isotopes)
» Liquid brine (natural chemistry and natural / applied tracers)

. Geophysws
3 x Electrical resistivity tomography (ERT)
= 3 X Acoustic emissions (AE) / ultrasonic travel-time tomography
= 2X Fiber optic distributed strain (DSS) / temperature (DTS) sensing
= +100 thermocouples

CONAX
fittings Borehole Closure Gage

(LVDT + strain gages)

N; Inlet
Controller, Flowmeter &

) Pressure Sensors




BATS Test Data

= Brine composition samples / H,0O isotope data
= Measure change in brine sources with temperature
= Geophysics
= Map 4D evolution of saturation / porosity / permeability
= Temperature distribution
= More brine available at high temp (inclusions + hydrous minerals)

» Thermal expansion brine driving force
= Salt dry-out near borehole

» (Gas permeability and borehole closure
= Thermal-hydrological-mechanical evolution of salt during heating

* Tracer migration through salt
= Estimate rate of brine / vapor movement through salt DRZ

= Post-test overcoring
= Cement seal, tracer distribution around source, damage
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Brine Inflow

= Brine inflow N 50°C
= Highest inflow rate initially “ iy
i7"

= Exponential decay of rate with time > ., wm:q;; .
= More brine inflow at higher temperatures "

= Vapor from dehydration of clay & gypsum L
= Brine from fluid inclusions L .

. Vertical WIPP boreholes
= Three forms of water contribute
= Can we discern chemically/isotopically?
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Kuhlman et al. (2017)
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Brine Composition
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» Liquid brine samples
= Distinguish sources of water in salt?

Dissolved WIPP salt
= Distinct endmembers
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GAS COMPOSITION

= (Gases enter borehole from
= Dissolved gas in brine (~15 MPa pore pressure in far field)
» Geogenic gases from salt (e.g., He & Ar)
= Added gas tracers (Xe, Ne, Kr & SFy)

2 Water Va pOI’ from brl ne SRS quadrupole mass spec ga; analyzer
» Natural H,0

* |sotopically spiked water L 1(~1 953)Asse Gajcompis'tfn e
breakthrough
« Transport time through salt - .
» Fractionation in borehole “ﬁ 7
- Analyze gases real-time _h_
* Mass spectrometer B
« H,0/ CO, infrared analyzer ——c0 e tiydocarbons
* Picarro water isotope analyzer o BT

Data from Coyle et al. (1987) BMI/ONWI-624



ERT / AE Expectations
= Electrical Resistivity Tomography (ERT)

» ERT electrodes cemented into 3 boreholes
» Salt apparent resistivity
= Reisitivity: reveal porosity and brine saturation

» Conduct 3D ERT surveys through time
= Estimate evolution of porosity / saturation
= Acoustic Emissions (AE)
= AE monitoring (especially during heat up & cooldown)

= | ocate AE sources near heated borehole
= AE correlated with permeability increases

= AE system installed in heated test only . "7, -
= Ultrasonic Wave Travel-time Data P
= Estimate extent/evolution of DRZ e,
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Cementitious Seals

Salt Annulus  Cement Plug
= Emplace Pre-fabricated Cement Plug
= Snug fit into satellite borehole
» Tubing embedded in plug (perm. test)
= Monitor seal evolution as borehole closes
= Parallel tests: ambient + heated conditions |

» Upscale GRS Lab Seals Tests
» GRS test monitored permeability evolution
= We will implement at borehole scale

= Qvercore Post-test to Analyze Interfaces

Collaboration with GRS

» Use same cement formulas in field as lab experiments
» Send WIPP salt and brine recipe to GRS for lab experiments
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Czaikowski & Wieczorek (2016)



Proposed DECOVALEX Task

= DECOVALEX 2023: Proposed Task H
Construction/Testing
= New boreholes cored/driled Feb-Apr 2019
» Test constructed/installed in new boreholes (June 2019)
» Heated test conducted for ~6 months (two phases)
» Unheated test conducted ~12 months
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= 2019: Initial test execution
= 2020: Distribute initial test data

= 2021: Simulate single processes (+ thermal)
= Brine production, D,0 transport
= Thermal-Hydrologic, Thermal-Mechanical, Thermal-Chemical
= Follow-on test data available
= 2022: More coupled processes
= Salt permeability/porosity as a function of damage

= 2023: Include data from ERT/AE/brine composition

= |nterested Parties

= US (SNL, LANL, LBNL), Germany (BGR, GRS), UK (RWM), Netherlands
(COVRA)



