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Qubits

The two-level quantum systems that

10) are used in quantum computing:
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10) = cos ()10) + e'"' sin (-
6)
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2 2

where

10) = (0) , 11> = (°,) .

Qubits can be represented in 3D as
points in the Bloch sphere.

Given an unknown qubit state, how do we learn what it is?
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Quantum state tomography

We can reconstruct a state by taking an informationally complete
set of measurements.

Measure:
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Operating on qubits

10)
Qubit states are transformed using
unitary operations, i.e. U such that

uut = utu =1

TI states around the Bloch sphere.
Unitary operations rotate qubitP

11)

How can we learn what an unknown unitary operation is doing?
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Quantum process tomography

Reconstruct an operation based on how it acts on known states.

10)

11) 11)

lo)

11)
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QCVV: quantum characterization, verification, and validation

In the age of noisy quantum computers, it is important to
characterize the behaviour of our quantum hardware.

Traditional quantum state and process tomography are done with
very strong underlying assumptions:

• state tomography assumes measurements are perfect

• process tomography assumes initial states preparation and
measurements are perfect

Are these reasonable assumptions?
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QCVV: quantum characterization, verification, and validation

No - in real physical systems, State Preparation And Measurement

(SPAM) are also noisy processes!

The results from our tomographic processes will not be consistent

with each other, or with the true behaviour of the system.

So then... is there another means of learning about our system?
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Gate set tomography (GST)*

Treat everything we can do to our quantum system equally.

Learn about SPAM at the same time as the other processes we
want to characterize.

Merkel, S. T., et al. (2013). Self-consistent quantum process tomography. Physical Review A, 87(6).

Blume-Kohout, R., Gamble, J. K., Nielsen, E., Mizrahi, J., Sterk, J. D., & Maunz, P. (2013). Robust,
self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit.
http : //arxiv . org/abs /1310 . 4492
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Gate set tomography (GST)

We represent state preparation, unitaries (gates), and measurement
as 'buttons' that we can push to operate on our quantum system.

A light on the box either turns on, or stays off, to indicate the
outcome of the measurement.
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Gate set tomography (GST)

Mathematically, we will represent every button as a superoperator -
our initial task will be to learn their contents.

•

IP)) = (* 
*) T

1E)) = (* 
T

/* * * *

* * * *
=

* * * *

* *

G2 = • • •

Important assumption: a button has the same action (i.e. same

superoperator) every time it is pressed.

How do we learn our superoperators?
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GST experiments

By pushing a bunch of buttons and chosen in a clever way.

GST experiments take the following form:

Experiments are performed multiple times - we record the
frequency with which the light turned on.
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Linear-inversion GST

We can reconstruct the
superoperators by using the
outcome frequencies from a
variety of experiments.

But wait... we know nothing
about the system; we have only
the assumption that each button
performs the same action
whenever it's pressed.
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Linear-inversion GST

We perform GST with respect to
a set of fiducial experiments, or
fiducial sequences.

These are short sequences of only
one or two button presses that
gives us a point of reference.

The set of fiducial sequences
must be informationally complete
(more on this in a minute!)



Linear-inversion GST

We perform experiments using the fiducial sequences to construct
a set of objects:

E, f, {G(k)}

000
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Linear-inversion GST

The matrix elements E. E.. 11̀) represent sequence probabilities -u
they can be calculated analytically from the superoperators using
Born's rule.

For example, consider the experiment:

C
The probability that the light turns on is

(EIG3G1G2GilM = Tr (IPHEIG3G1G2G1)
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Linear-inversion GST

Repeatedly run the experiments for the fiducial sequences, and
look at the frequency with which the light turned on.

•®®
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•®000
•Goo
•®00CDO

Experimen;t.

I CD

Fiducial sequence Counts

000 23

0,4® 2

0,00 1

0.00® 49

0040 48

@ASO® 27

0CDSO
00000@) 11

Use the obtained frequencies to populate "E, F, and {G(k)}.
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Linear-inversion GST

In principle, we can perform linear inversion to obtain our
lp)), 1E)), {Gk} from the E, F, {6.(k)}:

E; = ((E1Filio)) ET = ((E1E3

= ((ElFiFilio)) = B-11p)

= ((ElFiGkFj119)) -E-16.(k) = B-1GkB

We can learn our superoperators up to some additional linear
transformation B. For this to work out analytically, Bij = (Fj p)))1

This is where we can define 'informationally complete' - we need to
choose the fiducials so that F is invertible (and for a single qubit,
there must be four of them)!
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Linear-inversion gateset tomography

But there's a problem... Recall the Born rule and the sequence

probability. We want to learn p, E, {Gk}, but after linear
inversion we have expressions for them up to some matrix B.

B is not accessible experimentally!

Tr(IpM(EIG„ G51) = Tr (B—llpHEIBB-1G,kB • • • B-1G„B)

The sequence probability doesn't change with the inclusion of B.
B is a unknown gauge transformation.
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I 
Gauge freedom in gateset tomography

I

If we can't access B, we don't know the 'true' superoperators, we
only learn one set in their gauge orbit. Superoperators are a
gauge-dependent quantity.

n
CD 0 C) LGST

0 ® -
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Gauge freedom in gateset tomography

If we can't access B, we don't know the 'true' superoperators, we
only learn one set in their gauge orbit. Superoperators are a
gauge-dependent quantity.

CD 0 G3 LGST

...what can we do about this?
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Gauge freedom in gateset tomography

Option 1: Gauge-fixing.
Run a computational procedure to find a B that makes your
superoperators close to what you think they should be.
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Gauge freedom in gateset tomography

Option 1: Gauge-fixing.
Run a computational procedure to find a B that makes your
superoperators close to what you think they should be.

Issues:

• May be computationally costly

• Requires assumptions about the action of the buttons
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Gauge freedom in gateset tomography

Option 1: Gauge-fixing.
Run a computational procedure to find a B that makes your
superoperators close to what you think they should be.

Issues:

• May be computationally costly

• Requires assumptions about the action of the buttons

Option 2: Work with gauge-independent quantities instead.
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An operational representation

Recall the sequence probabilities we obtained from experiment:

= ((EIFilp))
= (KEIFiFilio))
= ((EIFiGkFAP))

These quantities, and consequently E, F, and (k), are
gauge-independent.

21 / 40



An operational representation

Furthermore, we can use them in the general expression to
compute arbitrary sequence probabilities...

Pr(light) = Tr (Ip)) ((EIGsk • • • G51)
Tr (B-11PHEIBB-1G5kB • • • EVI GslB)

Tr (B-11p))((EIB B-1 Gs,B • • • B-1 Gs1B)

Tr (E-1È •  ET

If we can learn E, f, and -(k), we can predict the outcome of any
future experiment! We call them the operational representation.
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Bayesian inference for the operational representation

But how do we actually go about learning it from the data?

We will use Bayesian inference. Bayes rule tells us that:

Pr(model data) cx Pr(data model) • Pr(model)

We will create a prior distribution of a large number of
hypothetical versions of E, F, and G(k), and then perform
Bayesian updates using data to obtain a posterior distribution.

We call this operational quantum tomography (OQT).

23 40



Bayesian inference for the operational representation
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Example: Ramsey interferometry

The Rabi oscillation frequency (w) tells us the likelihood of a qubit
being in either 10) or 11) in the presence of a driving field.

Single-qubit operations are often implemented by applying EM
pulses to induce rotations around the Bloch sphere. Knowing the
Rabi frequency helps us select the pulse duration that performs a
desired operation. We can learn it using Ramsey interferometry:

prepare

H h1-2
x H = a 'E

H = o-2 z

7 x puIse evolve for time t 7r xpulse

measure
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OQT for Ramsey interferometry

We can express Ramsey
interferometry in the OQT
formalism to help us learn the
oscillation frequency.

We'll have to 'discretize' time to
represent it as a button press.

Rx

•
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OQT for Ramsey interferometry

The full experiment then looks something like this:

H h12 _L hw az
2 x

H _ hst 
x '

hw az
2 

H = a2 z
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OQT for Ramsey interferometry

The OQT process for Ramsey interferometry consists of the
following steps:

1. Choose a prior distribution for what we think the operational
representations should look like.

It's not obvious what properties an arbitrary operational
representation should have, except it should contain all
positive numbers.

Instead, we choose a prior over the superoperators, e.g.

Rx(—;) R„(—; + 6) , E E 0-2)

and use these to later convert to the gauge-independent form.
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OQT for Ramsey interferometry

2. Choose a set of fiducial sequences.

This can be done using trial and error to see what 'works', i.e.
makes F invertible.

We chose:

• •

An 'empty' fiducial indicates an experiment where we perform

only SPAM.
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OQT for Ramsey interferometry

3. Initialize a particle cloud with many hypothetical operational

representations.

Sample superoperators from their priors. In the following
example, we initialize a cloud of 10000 particles under the
following assumptions:

• State preparation is perfect: IV-
• Measurement in computational basis is perfect
• Rx(5) pulled from R,(5 c E Ai(0.10-3)

• At pulled from Rz(w • dt), wE[0,1], dt = 1

Combine and use the fiducial sequences to compute E, F, and
G(k) for each individual sample.

1Yes, I previously explained that these assumptions are bad, but this is for
simplicity - I will show another example where this is not the case!
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OQT for Ramsey interferometry

4. Perform Bayesian inference

Using either true experimental data, or simulated data,
perform a series of experiments of the following form:

•
We performed experiments starting at 2 At presses, up to 50.

For each n, perform the experiments, and update the particle
cloud of hypothetical operational representations according to
Bayes' rule2.

2We used Sequential Monte Carlo techniques to do this.
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OQT for Ramsey interferometry

5. Assess the quality of our reconstruction.

Use the posterior distribution after training up to n = 50

button presses, and estimate sequence probabilities up to

n = 100.

Ramsey
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OQT for Ramsey interferometry

5. Assess the quality of our reconstruction.

We use a prediction loss: for true probability ps and estimated
probability p5, the loss is given by

Loss(ps, /35) = (Ps Ps)2

Ramsey interferometry likelihood vs sequence length
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OQT for Ramsey interferometry

The curves shown above are for a mean operational representation
computed over the whole posterior. In fact, each particle in the
posterior gives a slightly different trajectory.

Posterior trajectories for trained Ramsey model
1.0 -

0.8 -
o

.
j-; 0.6 -

— T ainfrest

° 0 4
_O
2

0.2 -

0.0 - 1
100 200 300

Number of dt button presses

400 500
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OQT for Ramsey interferometry

Why is this interesting?
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using standard GST techniques.
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OQT for Ramsey interferometry

Why is this interesting?

Ramsey interferometry is not something that can be addressed
using standard GST techniques.

We find in general that OQT is applicable to a broad array of
characterization tasks.

So far we have also successfully performed:

• Quantum state tomography

• Quantum process tomography (with simulated and real data)

• Randomized benchmarking
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OQT for experimental trapped-ion qubit data

a

Long-sequence gateset tomography: take linear-inversion GST as a
starting point, perform additional experiments and update
estimates using maximum likelihood techniques.

Linear < Target gate set
-1.-( Linear inversion )

•
Chi-squared

Gauge optimization (Minimum X2
estimation

CPTP contraction
r( •  

Maximum-likelihood

TP-constrained
Max likelihood gauge
estimation optimization

iterative improvement

0-0-0-0-0-0 A
c  . 
so —

8 25

L.

# of G, repetitions (k)

1 02

Fiducial

(Gerrn)k

Fiducial

Gate set estimate

d Prep

image: Blume-Kohout, R., Gamble, J. K., Nielsen, E., Rudinger, K., Mizrahi, J., Fortier, K., & Maunz, P. (2017).
Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature
Communications, 8, 14485. 36 / 40



OQT for experimental trapped-ion qubit data

We perform OQT using the same experimental data and same
sequence of experiments as performed in long-sequence GST.

Experimental operations will be noisy versions of:

• Gi, the identity gate
• Gx, a 3 rotation about x
• Gy, a 2 rotation about y
• preparing the state 10)
• measurement in the computational basis
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OQT for experimental trapped-ion qubit data

We find that our results are competitive with existing techniques!
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Conclusions and future work

Operational tomography allows us to characterize and learn about
a wide variety of quantum systems.

Learning the operational representation allows us to predict the
outcome of future experiments in a way that is independent of the
gauge-related difficulties suffered by other procedures.

Next steps for OQT:

• Scaling up to multi-qubit systems

• Multi-state / multi-measurement cases
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