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Can we replicate exact flight conditions during ground testing without a
2 structural model?

Vibration data from rocket test

Image credit: NASA

Objective: To replicate the

1du 
exact flight environment
ring ground testing without
having to build a model by
reconstructing excitation

force.

System on 6 DOF shaker



The typical approach for determining a shaker input relies on a finite
3 element model to compute a transfer function between DOFs

Build FEM and perform modal

correlation to test data
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Obtain mode shapes and

mode frequencies
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Force Reconstruction
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Sandia's Sum Weighted
Accelerations Technique

(SWAT): Assumes linearity

and relies on mode shapes
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ATA's Least Squares Force

Reconstruction:• Assumes
linearity and operates in the

frequency domain
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Image credit: ATA

Can we develop a pure data-driven approach that does not rely on a finite element model AND

does not assume linearity?



Recurrent neural networks were recently used to predict random
4 vibration response of nonlinear systems
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A recurrent neural network used for speech generation was adapted to
5 k map random vibration response between DOFs

The Temporal Convolutional Network (TCN)
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https://deepmind.com/blog/wavenet-generative-model-raw-audio/

1pr 
It is an autoregressive model that
edicts one timestep at a time based
on the knowledge of the previous

states and inputs/outputs.

The WaveNet was developed for text
to-speech generation.

1
 Instead of text and speech, the inputs

and outputs were accelerations
measured at different locations on a

structure.



Source of training data would come from component response during
6 ground test excitation to white noise

so
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7 I How many gauges are enough to find an exact mapping?

Idea: Pick the accelerometers with highest correlation to base acceleration
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8 I How many gauges are enough to find an exact mapping?

Idea: Pick the accelerometers with highest correlation to base acceleration
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The Temporal Convolutional Network (TCN) Predicted Response
9 Matched the Actual Test Data Well - Time Domain

Including all 30 gauges results in

exact match with target data

Training Data — Expefimentation

Inputs — Response at Measure Locations

Outputs — Base Acceleration

1.1

natapoints

\PPlif 11\ \11\1\ IkV\

3650 3500 3550m 103

Actual
Prediction

The TCN was able to find a gauge-to-gauge force response function without explicit knowledge of
the component.



The TCN Predicted Response Matched the Actual Test Data Well10
Frequency Domain

.pi•iprompohPkirr•erril

Ntoo am as a15 020

Tine, s

Acblal

025

0.10 K1.2

'riffle, 5

Patial

P125

• P
llr " II r in TI"- "

216.00 0.05 010 023 020 0.25

s

ire

nadktiva

mot, Tioe oit.p Ws, 11.141} 4-9.12N1pria

Piedicamm

VIF "Inn 11, l y 1[1 q !I' 11!I VIP 1'

CID 025 020 025

-n me. s

IP

Spectrogram of response Power Spectral Density of response



11 What is the TCN learning?
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12 What is the TCN learning?
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1 3 What is the TCN learning?
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14 What is the TCN learning?
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New signals undergo series of

transformations

Network learns to discard most of the

new signals, except for 10

These 10 signals are combined into 3 final

time signals that match target output



Final operation is just linear combination of the 10 non-zero signals that
1 5  the TCN found
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The transfer
function was

decomposed into
series of near
transformations

followed by linear
superposition.

10 non-zero signals Last layer weights



I16 Conclusions
i
1

A new method was developed to solve the inverse problem of force
Ireconstruction to replicate flight conditions in the time domain using

neural networks.

No need for a finite element model or explicit computation of transfer i
functions or mode shapes

It can handle nonlinear response because it does not rely on linear
superposition

No spatial representation is given. The location of the applied forces
must be known or assumed.

Training requires sample data from ground test (could be white noise)

I
1
I



17 Any Questions?
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