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We use nitrogen vacancy (NV) color centers in
diamond for magnetic microscopy
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Diamond crystal stress inhomogeneity can
complicate NV magnetometry

Goals:
Map the diamond stress tensors

Study natural strain defects

Understand their effects on NV magnetic imaging

For each NV orientation:
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adiag = 0-XX + 0-1717 aZZ

{al, a2} = {4.86, -3.7} MHz/GPa

Repeat for each K and solve:
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Homogeneous M, is better for magnetic imaging

Stress maps indicate diamond growth problems

L Usually get more stress in di a g and 6xy
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Strain from edges, corners, lattice dislocations, and
surface damage
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Birefringence:
+ Works for transparent materials

+ Easier setup a faster measurement
- Integrate through diamond slab

- Phase ambiguity if b >

- Nontrivial stress extraction

- Birefringence in other optics
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NVs:
- Need stress-dependent defects

- NV magnetic imager needed

+ Measure in NV Layer only

+ No upper bound on stress*

+ Easy M, to stress conversion

- Temperature stability
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Single-pixel stress spoils NV T2* and contrast [6]
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Strain features creep into B field measurements
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