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2 I Outline

• Motivation

• Molecular Dynamics (MD) Methods

• C1ayFF Modification

• Swelling Free Energies

• Proposed Swelling Mechanism
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3 I Clay swelling

• Importance of interlayer hydration and intracrystalline
swelling in smectite clays:
• Chemomechanical coupling
• Fate and transport of contaminants and nutrients
• Industrial applications

• XRD profile modeling indicates the coexistence of
interlayer hydration states (OW, 1W, 2W)

• Unresolved issues:
• How do water molecules enter interlayer regions

from pore fluids?
• What are the transition states (OW-1W, 1W-2W)?

• Goal: Apply enhanced MD simulation techniques
(umbrella sampling, potential of mean force) to evaluate
relative free energies of interlayer hydration states
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Previous molecular simulation studies of Na-montmorillonite swelling4 I
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5 I Molecular dynamics with enhanced sampling (Tuan Ho)
A

• Na-MMT nanoparticle
• 2 TOT layers, 53 A x 31 A
• Negative charge in octahedral sheet

(Mg:Al 0.75:3.25)
• Periodic in 1D
• Broken bonds completed with -H and -OH
• Particle immersed in a water box
• Fully flexible

• MD methodology (LAMMPS)
• ClayFF with new SiOH and AlOH angle bending terms

(Pouvreau et al, J. Phys. Chem. C 2017, 2019)
• Constant pressure ensemble (1 atm, 300 K)
• Umbrella sampling (COLVARS package)

• d-spacing controlled by layer-layer harmonic
interaction (individual windows, 9.5 A — 17.0 A)

• Each window simulated for 3.0 ns
• Potential of mean force (PMF) calculated using
WHAM (Grossfield)
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6 
Initial results

Unconstrained MD:
• No waters enter the dry interlayer
• Some Na+ reside deep in siloxane cavities

Initial PMF shows unusually stable dry state

250

7 \

200

150

1W

100 2W

50
OW

0

10 12 14 16
d-spacing (A)

CIayFF modifications: Lennard-Jones interactions
• Clay 0 atoms to fit XRD data (Ferrage et al., J. Phys. Chem. C 2011)
• Surface 0 atoms to fit IR spectra (Szczerba et al., Clays Clay Miner. 2016)
• We modified only the Na-Obridging interaction for particle stability and consistency with original CIayFF



7 
CIayFF modification

Several choices of Na-Obridging
interaction were examined
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expected trend for Na-MMT in contact
with water (2W < 1W < OW).



8 I Validation of new LJ parameters
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9 k Na-montmorillonite hydration
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Movie shows interlayer expansion as layers are separated at
a rate of 5 A/ns.
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10 Details of stable states and possible transition states
180

A OW
• Single layer of Na+

B OW-1W transition
• Waters enter interlayer, hydrate Na+
• Water concentration gradient
• Unequal d-spacing
• Bending of TOT layers

C 1W
• Single layer of Na+

D 1W-2W transition
• Water concentration gradient

E 2W
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11 A closer look at the I W-2W transition

Density profiles of water O atoms
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12 Important role of layer-layer HBs

HBs between layer -OH groups contribute to the OVV-1w energy barrier

Layer-layer HBs included Layer-layer HBs not included
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13 Conclusions

.,

• The mechanism of interlayer hydration and swelling of smectite clays is still a challenging problem.
• MD simulations provide insight based on an idealized Na-MMT particle immersed in water.
• Enhanced sampling techniques to examine stable hydration states and possible transitions.
• Modifications to C1ayFF parameters (cation-clay interactions) are needed to obtain the expected

trend in free energies.
• Hydrogen bonding between layer edge groups appear to play a key role in interlayer hydration.

Merci beaucoup!


