This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Mechanism of montmorillonite interlayer

hydration from potential of mean force
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Clay swelling
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* Chemomechanical coupling
* Fate and transport of contaminants and nutrients
* Industrial applications
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XRD profile modeling indicates the coexistence of
interlayer hydration states (OW, 1W, 2W) — 0%
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* What are the transition states (OW-1W, 1W-2W)? | 01w water

Goal: Apply enhanced MD simulation techniques
(umbrella sampling, potential of mean force) to evaluate
relative free energies of interlayer hydration states
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Previous molecular simulation studies

Karaborni et al.
Science 1996

of Na-montmorillonite swelling
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5 I Molecular dynamics with enhanced sampling (Tuan Ho)

 Na-MMT nanoparticle
« 2TOT layers, 53 Ax31A
* Negative charge in octahedral sheet
(Mg:Al 0.75:3.25)
* Periodic in 1D
* Broken bonds completed with -H and -OH
* Particle immersed in a water box
 Fully flexible

« MD methodology (LAMMPS)
* ClayFF with new SiOH and AIOH angle bending terms
(Pouvreau et al, J. Phys. Chem. C 2017, 2019)
* Constant pressure ensemble (1 atm, 300 K)
* Umbrella sampling (COLVARS package)
* d-spacing controlled by layer-layer harmonic
interaction (individual windows, 9.5 A — 17.0 A)
* Each window simulated for 3.0 ns
* Potential of mean force (PMF) calculated using
WHAM (Grossfield)
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. | Initial results

Unconstrained MD: Initial PMF shows unusually stable dry state

« No waters enter the dry interlayer .
» Some Na* reside deep in siloxane cavities
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ClayFF modifications: Lennard-Jones interactions
 Clay O atoms to fit XRD data (Ferrage et al., J. Phys. Chem. C 2011)
» Surface O atoms to fit IR spectra (Szczerba et al., Clays Clay Miner. 2016)
 We modified only the Na-O,4q,, interaction for particle stability and consistency with original ClayFF




ClayFF modification

Several choices of Na-Obridging
interaction were examined
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Validation of new L) parameters

Result: longer Na-0y,;44,, distances
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9 | Na-montmorillonite hydration
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Movie shows interlayer expansion as layers are separated at
a rate of 5 A/ns.
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10 | Details of stable states and possible transition states
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11 I A closer look at the | W-2W transition

Density profiles of water O atoms

1W Transition = 2W >2W
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12 I Important role of layer-layer HBs

HBs between layer -OH groups contribute to the OW-1W energy barrier

Layer-layer HBs included Layer-layer HBs not included
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13 I Conclusions
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* The mechanism of interlayer hydration and swelling of smectite clays is still a challenging problem.

* MD simulations provide insight based on an idealized Na-MMT particle immersed in water.

* Enhanced sampling techniques to examine stable hydration states and possible transitions.

* Modifications to ClayFF parameters (cation-clay interactions) are needed to obtain the expected
trend in free energies.

 Hydrogen bonding between layer edge groups appear to play a key role in interlayer hydration.

Merci beaucoup!




