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Motivation

e Currently developed DARMA AMT runtime system has a
need for efficient distributed load-balancing (LB) strategies
for target applications.

— Cf. J. Lifflander’s presentation on DARMA

« DARMA is in the process of being reimplemented to reap LB
benefits. End-use case still in development.

« EMPIRE-PIC (ES/EM) application will rely on LB adjustments
between iterations, with moderate persistence.

« Communication-awareness is sought but the ability to
optimally balance weights is a requirement.
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Premises

« Centralized LB strategies don't scale; hierarchical LB
ones have limited scalability and tend to be costly to run.

* For the scale of the problems we’re considering, this only
leaves out fully distributed LB approaches. Being
inexpensive (ideally), these can be run more frequently.
Historically those however yielded poor LB results.

» Distributed LB schemed described in Menon & Kalé
[SC’2013] appears to be inexpensive to run, and to yield
good processor/load distributions.
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The GrapevineLB Algorithm

 Distributed LB algorithm originally presented by Menon & Kalé at
SC'13.
* Includes:
1. an information propagation stage (gossip) to obtain partial
processor/load distributions across system;
2. a probabilistic transfer stage to offload work units from
overloaded onto underloaded processors
* Original paper demonstrated performance gains as compared to
centralized, distributed, and hierarchical LB for 2 applications:
1. matches centralized strategies in terms of time/iteration, while
avoiding associated bottlenecks.

2. reduces total application time (molecular dynamics and AMR)
with acceptable load distribution while incurring less overhead.
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Initialization

Lunderloaded < Laverage < Loverloaded
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Gossiping Phase — round 1

For all underloaded
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Gossiping Phase — rounds 2,...,k

For all recipients
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Gossiping Phase — Informed Selection

Underload knowledge
accumulates over rounds
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Transfer Phase

For all overloaded as long as L > toverioad x Laverage
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Transfer Phase — Informed Selection

For all overloaded as long as L > toverioad x Laverage
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Transfer Phase — Decision Criterion

Input:

O - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer

L; - Load of this processor

Lavg - Average load of the system

: Compute p; VP, €S
: Compute Fj =), . px

Select object O; € O
Randomly sample X € S using F

Lx =Lx + lOCLd(Oi)
Li - Lz' — lOCLd(Oz)
0+ 0\ O;

end if

: end while

SRS Re P
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Experimental Findings
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Experimental Findings

iteration transfers  rejected rejection rate imbalance
(index)  (number) (number) (%) (Z)
0 280
1 9084 154931 94.46 187
2 4 1654 s 99 76 187
3 1 1130 99.91 187
4 7 2682 99.74 185
5 6 2396 99.75 183
6 2 1143 99.83 183
7 1 1041 99.90 183
8 0 882 100.0 183
9 0 882 100.0 182
1 3 1405 99.79 182
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Experimental Findings

« Confirming original findings that increasing fanout rapidly
had diminishing returns.

 In particular increasing fanout/number of round does not
resolve sub-optimal convergence even with perfect
information.

« Changing o-picking strategy (which may require sorting
and be costly) does not help either.

e high rejection rates hint at too tight criterion
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Criterion Analysis

« Confirming original findings that increasing fanout rapidly
had diminishing returns.

 In particular increasing fanout/number of round does not
resolve sub-optimal convergence even with perfect
information.

« Changing o-picking strategy (which may require sorting
and be costly) does not help either.

e high rejection rates hint at too tight criterion

P.P. Pébay, J. Lifflander, UIUC 05/02/2019 sinaa b S ek O




Transfer Phase — Monotonicity

Input:

O - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer

L; - Load of this processor

Lavg - Average load of the system

1: Computep; V P; €S

2: Compute F; = Zk<j Pk

3: while (L; > (T X Lavg)) do <
4: Select object O; € O

5: Randomly sample X € S using F
6: if (Lx +load(O;) < Lgvg) then
e Lx =Lx + lOCLd(OZ')

8: Li - Lz‘ — lOCLd(Oz)

9: O<+— 0\ O;
10: end if
11: end while
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Transfer Phase — Monotonicity

Input:

O - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer

L; - Load of this processor

Lavg - Average load of the system

: Compute p; VP, €S
: Compute F; = qu‘ Dk

Select object O; € O
Randomly sample X € S using F
if (Lx +load(O;) < Lgvg) then
Lx =Lx + load(Oi)
Lz' - Lz' — lOCLd(Oz’)
O<+— 0\ O;
end if
: end while
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Transfer Phase — Modified Criterion

 Proposal: replace 6:
if L(0) < Laverage = Lunderloaded then

with 6’:

if L(0) < Loverioaded = Lunderloaded then

 Lemma: Alternate criterion 6’ is necessary and sufficient for
monotonic decrease of Algorithm 2’s objective function.

« Remark: Alternate criterion 6’ is weaker than 6.

* Proof: cf. to-be-released SAND Report (Pébay & Lifflander).
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Experimental Findings with 6
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Experimental Findings with 6’
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Experimental Findings with 6’
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Experimental Findings with 6

iteration transfers  rejected rejection rate imbalance
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Experimental Findings with 6’

iteration  transfers rejected rejection rate imbalance
(index)  (number) (number) (%) (Z)
0 280
1 11292 648 5.427 3.94
2 4044 3603 me—-17 12 1.60
3 2201 3412 60.79 0.873
4 1324 3086 73.03 0.632
5! 765 3171 80.56 0.632
6 410 2969 87.87 0.626
7 247 2794 91.88 0.626
8 159 2749 94.53 0.626
9 120 2082 95.72 0.626
1 g 2643 97.35 0.623
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Experimental Findings 6 vs. 6’

iteration criterion 6

criterion 6’

(index) (7) (Z)
0 280 280
1 187 3.34
2 187 1.60
3 187 0.873
4 185 0.632
5 183 0.632
6 183 0.626
7 183 0.626
8 183 0.626
9 182 0.626
10 182 0.623
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2'5 instead of 104 objects with 6’

iteration transfers  rejected rejection rate imbalance
(index)  (number) (number) (%) (Z)
0 270
1 33761 209 0.790 1.92
p 7179 3642 33.66 0.714
3 4227 5946 58.45 0.399
4 3304 9023 73.20 0.317
5, 2496 9570 79.31 0.273
) 1978 10138 83.67 0.187
7 1419 9895 87.46 0.139
8 1026 9312 90.08 0.139
9 692 8938 92.81 0.139
10 463 8379 94.76 FO.139
I improves as object-to-processor ratio increases (8 > 2.5) _
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o i
Prescribed VT Object Moves with 6

Application to real VT case with 8 processors and 100 objects, k=<4, i=5

D |D| min D D maxD Rp op Y1.p Yo.p Ip
O 100 0.00026703 0.042076 0.30404 0.30377 0.074587 2.8855 9.8574 N/A
L 8 0.004673 0.52595 2.3209 2.3162 0.69632 2.030 5.5987 3.4128

Object Moves
I 3
[ )
5

few movements are
allowed to occur

6
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Prescribed VT Object Moves with 6’

Object Moves

1

A

7
E = n

many movements are

/ allowed to occur

load range ~ object

&
5 standard deviation;
- optimality achieved?
criterion minl max/l R, or
6 0.28542  1.7508 1.4654 370.46454
6’ 0.49539 0.57315 0.077759 0.024726
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Summary & Current Work

Surprising performance findings made us deep-dive into
algorithm and propose improvement that appears substantial.

Integrating modified algorithm into DARMA.

Developing a parallel performance model (time and size
complexity).

— Time complexity O[f x min(k,log:(np))+no+2 Q(2 log(np))]

Developing an objective function integrating communication
costs.
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Thank You

philippe.pebay@ng-analytics.com

gliffla@sandia.qgov
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