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Motivation
• Currently developed DARMA AMT runtime system has a

need for efficient distributed load-balancing (LB) strategies
for target applications.

Cf. J. Lifflander's presentation on DARMA

• DARMA is in the process of being reimplemented to reap LB
benefits. End-use case still in development.

• EMPIRE-PIC (ES/EM) application will rely on LB adjustments
between iterations, with moderate persistence.

• Communication-awareness is sought but the ability to
optimally balance weights is a requirement.
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Premises

• Centralized LB strategies don't scale; hierarchical LB
ones have limited scalability and tend to be costly to run.

• For the scale of the problems we're considering, this only
leaves out fully distributed LB approaches. Being
inexpensive (ideally), these can be run more frequently.
Historically those however yielded poor LB results.

• Distributed LB schemed described in Menon & Kalb
[SC'2013] appears to be inexpensive to run, and to yield
good processor/load distributions.
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The GrapevineLB Algorithm

• Distributed LB algorithm originally presented by Menon & Kalé at
SC'13.

• Includes:

1. an information propagation stage (gossip) to obtain partial
processor/load distributions across system;

2. a probabilistic transfer stage to offload work units from
overloaded onto underloaded processors

• Original paper demonstrated performance gains as compared to
centralized, distributed, and hierarchical LB for 2 applications:

1. matches centralized strategies in terms of time/iteration, while
avoiding associated bottlenecks.

2. reduces total application time (molecular dynamics and AMR)
with acceptable load distribution while incurring less overhead.
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Initialization

Lunderloadel < Laverage < Loverloaded
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initial load
information

Gossiping Phase round 1

• fanout k•
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Gossiping Phase rounds 2,...,k

For all recipients 

lit • •
• aggregated load
1 ofs information

•
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fanout k
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Gossiping Phase Informed Selection

Underload knowledge
accumulates over rounds
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Transfer Phase

For all overloaded  as long as L > toverload x Laverage

•
♦o•

01 such that
Lunderloaded <

Laverage - L(01)

candidates known 
to be underloaded

•
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Transfer Phase Informed Selection

•

For all overloaded  as long as L > toverload x Laverage

•

01 such that
Lunderloaded <

Laverage - L(01)

bias (pseudo)
random selection
by load value
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Transfer Phase Decision Criterion

Input:
0 - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer
Li - Load of this processor
Lavg - Average load of the system

1: Compute pj V Pj E S
2: Compute Fj = Ek<j Pk
3: while (Li > (T x Lavg)) do
4: Select object Oi E O
5: Randomly sample X E S using F
6: if (Lx load(0i) < Lavg) then
7: Lx = Lx +load(0i)
8: Li = Li — load(02)
9: \Oi
10: end if
11: end while
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Experimental Findings
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Experimental Findings

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (I)
0 280
1 9084 154931 94.46 187
2 4 1654 99.76 187
3 1 1130 99.91 187
4 7 2682 99.74 185
5 6 2396 99.75 183
6 2 1143 99.83 183
7 1 1041 99.90 183
8 0 882 100.0 183
9 0 882 100.0 182
10 3 1405 99.79 182
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Experimental Findings

• Confirming original findings that increasing fanout rapidly
had diminishing returns.

• In particular increasing fanout/number of round does not
resolve sub-optimal convergence even with perfect 
information.

• Changing o-picking strategy (which may require sorting
and be costly) does not help either.

high rejection rates hint at too tight criterion
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Criterion Analysis
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Transfer Phase Monotonicity

Input:
0 - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer
Li - Load of this processor
Lavg - Average load of the system

1: Compute pj V Pj E S
2: Compute Fj = Ek<j Pk
3: while (Li > (T x Lavg)) do
4: Select object Oi E O
5: Randomly sample X E S using F
6: if (Lx load(0i) < Lavg) then
7: Lx = Lx +load(0i)
8: Li = Li — load(02)
9: \Oi
10: end if
11: end while
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tirlow
Transfer Phase

• Proposal: replace 6:

with 6':

Modified Criterion

if L(o) < Laverage - Lunderloaded then

if L(o) < I—overloaded - Lunderloaded then

• Lemma: Alternate criterion 6' is necessary and sufficient for
monotonic decrease of Algorithm 2's objective function.

• Remark: Alternate criterion 6' is weaker than 6.

• Proof: cf. to-be-released SAND Report (Péba9 & Lifflander).
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Experimental Findings with 6
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Experimental Findings with 6'
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Experimental Findings with 6'

Iteration: 0
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Experimental Findings with 6

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (I)
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Experimental Findings with 6'

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (I)
0 280
1 11292 648 5.427 3.34
2 4044 3603 47.12 1.60
3 2201 3412 60.79 0.873
4 1324 3586 73.03 0.632
5 765 3171 80.56 0.632
6 410 2969 87.87 0.626
7 247 2794 91.88 0.626
8 159 2749 94.53 0.626
9 120 2682 95.72 0.626
10 72 2643 97.35 0.623
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Experimental Findings 6 vs. 6'

iteration criterion 6
(index) (I)

280
187
187

3 187
185

5 183
183

7 183
183
182

10 182

criterion 6'

(I) 
280
3.34
1.60

0.873
0.632
0.632
0.626
0.626
0.626
0.626
0.623
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215 instead of 104 objects with 6'

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (/) 
0 270
1 33761 269 0.790 1.52
2 7179 3642 33.66 0.714
3 4227 5946 58.45 0.399
4 3304 9023 73.20 0.317
5 2496 9570 79.31 0.273
6 1978 10138 83.67 0.187
7 1419 9895 87.46 0.139
8 1026 9312 90.08 0.139
9 692 8938 92.81 0.139
10 463 8379 94.76 0.139

/ improves as object-to-processor ratio increases (8 > 2.5)
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rill011PAL-4raigt Prescribed VT Object Moves with 6

Application to real VT case with 8 processors and 100 objects, k-f=4, i 5

D min D D max D RD CYD 71,D 72,D ZD

0 100 0.00026703 0.042076 0.30404 0.30377 0.074587 2.8855 9.8574 N/A
8 0.004673 0.52595 2.3209 2.3162 0.69632 2.030 5.5987 3.4128

Object Moves
1 3

111.

7

few movements are
allowed to occur

1
4 0-2
3
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"Mew ‘PP.Prescribed VT Object Moves with 6'

Object Moves

1 7

many movements are
allowed to occur

load range - object
standard deviation;
optimality achieved?

criterion min C max RL CIL

.7508 1.4654 I0.46454

6 ' 0.49539 0.57315 0.077759 0.024726
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Summary & Current Work

• Surprising performance findings made us deep-dive into
algorithm and propose improvement that appears substantial.

• Integrating modified algorithm into DARMA.

• Developing a parallel performance model (time and size
complexity).

Time complexity O[f x min(k,logf(np))+110+2 0(2 log(np))]

• Developing an objective function integrating communication
costs.
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Thank You

philippe.pebay@ng-analytics.com 

glifflaQsandia.gov
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