
Optimizing a New DARMA
Runtime for Load Balancinp

EMPIRE

Presented by: Jonathan Lifflander (PI), SNL

Current Team:

Ulrich Hetmaniuk (NGA) Phil Miller (NGA)

Nicolas Morales (SNL) Philippe P. Péba9 (NGA)

Meriadeg Perrinel (NGA) Hoby Rakotoarivelo (NGA)

Nicole Slattengren (SNL) Gary Templet (SNL)

NGA = NexGen Analytics, SNL = Sandia National Labs

Charm++ Workshop 2019, May 1-2nd

® alibi' NASA
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-5810C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



What is DARMA?
Sandia
National
Laboratories

■ DARMA provides C++ abstractions for asynchronous many-
task (AMT) programming models

■ Driven directly by Sandia's application needs

■ Was previously part of Sandia's ATDM (Advanced Technology,

Development, and Mitigation) program, building a technical roadmap

for next-generation code development

■ Recently migrated to CSSE (Computational Systems & Software

Environment)

■ History

■ Many years ago it was a resilience project

■ In 2015, surveyed and evaluated existing AMT runtimes

■ In 2016-2017, built C++ abstractions to bridge AMT models

Focused on sequential semantics and advanced PM abstractions

2



What is DARMA?
Sandia
National
Laboratories

■ In 2018-now:

■ Focused on producing AMT runtime software for EMPIRE, a full-

fledged Sandia application

Building flexible PM abstractions that interoperate with MPI

Researching distributed load balancing strategies for large-scale

deployment

— Philippe Péba9 will talk about ongoing LB research after this

■ Less emphasis on bridging the gaps across existing AMT runtimes

■ More emphasis on building production quality software for AMT

■ DARMA team works closely with the EMPIRE team

EMPIRE development used as a catalyst to drive programming model

research

Goal: to reimplement parts of EMPIRE with DARMA to reap benefits from

load balancing

3



vt (Virtual Transport)

■ In 2017, VT was originally initiated as a "backend"

■ Started as a lower-level runtime

■ Provides maximum MPI interoperability

■ Does not strictly follow a specific PM (PERL mentality)

■ Design requirements

■ Abstracts data movement

■ Provides easy, thin endpoint virtualization

■ Asynchronous, distributed event completion & coordination

■ Thin layer on top of MPI

Has some analogous constructs to MPI

■ Written entirely in C++: mostly C++11 (with a little C++14)

Compiles with gcc 4.9, clang 3.9, Intel 18

■ Open-source license (on Github, will be public soon)

Sandia
National
Laboratories

4



vt (Virtual Transport)

■ Control abstractions

Sandia
National
Laboratories

■ A "node" -> MPI rank

While it can spawn threads, the primary use case is with Kokkos kernels

■ A "Pendingsend" -> the root of a task subtree

An operation that you may use to sequence wrt another action

■ A "group" -> MPI group

A subset of nodes with a associated communicator VT builds for you

Can be constructed collectively or rooted

■ A "virtual context" -> a migratable C++ object providing handler state

Similar to a Charm++ chare with different semantics

■ A "virtual context collection" -> a set of virtual contexts

Similar to a Charm++ chare array

■ An "epoch" -> a collective/rooted group of operations

Perform termination over a subset of control/data operations
5



vt (Virtual Transport)

■ Data abstractions

■ An "active message" -> a C++ POD object

May be serialized or not

May be sent to a handler or destination-oblivious endpoint

■ RMA (Remote Memory Access)

Directly access memory owned by another task or node

— Reduces copying and overdecomposition overheads

May get/put data directly to a node or virtual context

May or may not use hardware primitives (depending on type)

— Subset of functionality is currently backed by MPI one-sided

Has windows similar to MPI which can be linked to an epoch

■ Load balancing

■ HierarchicalLB from HPDC'12 paper: Work Stealing and Persistence-
based Load Balancers for Iterative Overdecomposed Applications

Jonathan Lifflander, Sriram Krishnamoorthy, Laxmikant V. Kale

Sandia
National
Laboratories

6



vt (Virtual Transport)

• Over 2 years of development
• 55k lines of code (sloccount)

• >600 unit + integration tests

• Successful mini-app runs on 100k+ cores of Trinity

• Software engineering
• The team as grown significantly that works on VT

• We are working on improving software engineering processes

Code reviews, automated testing

• Has a combination of research/experimental and production
components

Sandia
National
Laboratories

7



EMPIRE Physics Application

■ Electromagnetic/electrostatic plasma physics application
■ Encompasses particle-in-cell (PIC), fluid, and hybrid

■ Uses Trilinos for solvers and STK (Sierra Toolkit) for meshing

■ Part of Sandia's ATDM program

Goal: build the next-generation apps that will replace the current

production ones

Expected to replace current production capability in —3-5 years as it is

hardened, verified, and validated

■ Currently, the DARMA team is focused on a part of EMPIRE-PIC

Met a hard deadline in FY19-Q1 to demonstrate the feasibility of the

DARMA software stack to improve performance through load balancing

Built a proof-of-concept overhaul of the PIC portion in EMPIRE in Q1

Currently finishing the full DARMA implementation of the EMPIRE-PIC

code on the main branch of EMPIRE

Sandia
National
Laboratories

8



EMPIRE-PIC: MPI iteration structure

■ In MPI, each rank has:

■ A single piece of the mesh, decomposed a priori

■ The set of particles that reside in that spatial region

■ Each PIC iteration (at a high level):

• (1) Perform all the "pre-move" particle-related operations
Particle injection, weight fields (associated with mesh)

• (2) Execute the PIC move kernel

Particles traverse elements of the local mesh block

Send/receive any outgoing/incoming particles at local mesh boundaries

• (3) MPI all-reduce counting particles received

If count is non-zero, go to (2); else PIC move is complete go to (4)

■ (4) Perform post-move operations

Sort particles, update counts, weight charge

• (5) Run the solver on the fields (in Trilinos)

Sandia
National
Laboratories

9



Spatial region (4 MPI ranks in 2D) Replicated spatial egion (k=3)

EMPIRE-PIC Tasking Challenges
Sandia

1%21 National
Laboratories

• Overdecomposing existing mesh blocks in EMPIRE is difficult

• Mesh may be unstructured

• Baseline mesh decomposition is fixed

Solver (Trilinos) and other parts of the code will not change

• Sierra Toolkit handles mesh decomp and ghosting

• In FY19-Q1, replicate mesh blocks to overdecompose

• Each MPI rank creates k replicants that operate across the same
spatial region

• VT collection uses a 2D indexing scheme to identify elements: (rank,k)

• When a move pushes a particle to a neighbor, pick any replicant for
the appropriate region (rank,O..k-1) to invoke the kernel

• Each iteration the replicants are updated with new solver data

• Longer term: 2-level mesh partitioning scheme is needed

10



EMPIRE Q1 Problem Mesh (16 ranks)

o-

2.

4-

15.

Sandia
National
Laboratories

11



EMPIRE Q1 Problem Mesh & Particles
Sandia

tali National-11 Laboratories

12



EMPIRE Q1 Problem Mesh & Particles Animation

Timestep : 0
Simulation Time : 0

charged particle type

e-

E
_
v
e
c
 F
ie

ld
 M
a
g
n
i
t
u
 

Sandia
National
Laboratories

7.0e+03

2000

a) 1000

500

200

100
50 =

20 I

10

5

2

7.0e-01

13



EMPIRE-PIC Tasking Challenges
Sandia
National
Laboratories

■ PIC is composed of a partially ordered sequence of operations
performed varies depending on the physics

■ Each task/element in the collection does not know the sequence or
ordering constraints

■ Operations and ordering constraints vary across elements

■ After LB runs, we want operations to be dispatched locally
(unless there is data exchange)

■ Instead of broadcasting/point-to-points to start a given operation on
all collection elements, loop over local elements residing on a node

14



EMPIRE-PIC Tasking Challenges
Sandia
National
Laboratories

■ MPI rank-based driver code (each rank drives physics for local

block)

■ Example sequence of PIC operations:

particle mover->setParticleDT()

particle mover->injectParticles()

pa rticle mover->weightFields()

particle_mover->acceleratePaticles()

Recursive particle move, send/recv, all-reduce, repeat

particle mover->sortParticles()

particle mover->updateCounts()

particle mover->weightCharge()

■ In the MPI code, these are strictly sequenced, but some may be

reordered, and possibly made concurrent

15



Sender-side Ordering with Epochs

/* Every MPI rank */

auto col = vt::constructCollective<PIC Col>(vt::Range(nranks,k));

/* for each PIC-move iteration */

vt::EpochType move ep = vt::newCollectiveEpoch();

for (auto idx : localElms(col))

col[idx].send<DoMoveMsg,moveFunc>(vt::makeMsg<DoMoveMsg>(move ep));

vt::finishedEpoch(move ep);

Sandia
National
Laboratories

for (auto idx : localElms(col)) {

vt::PendingSend sort = col[idx].send<SortMsg,sortFn>(sortMsg, move ep);

vt::PendingSend cnt = col[idx].send<CountMsg,updateFn>(cntMsg, std::move(sort));

col[idx].send<WeightMsg,weightCharge>(weightMsg, std::move(cnt));

}
■ If vt : : PendingSend is not captured as a return value, the C++

destructor gets called immediately

■ Message gets sent with no extra cost

■ VT creates a new rooted TD epoch to recursively track operations rooted
at the message send

■ Dijkstra-Scholten engagement-tree termination detection for rooted epochs

■ 4-counter wave-based termination detection for collective epochs
16



Initial Results for Q1 Problem

0.5

-1 0.4
0

— 0.3

.t4

0.2

° 0.1

Baseline MPI/VT Move Comparison
(kahuna, 16 nodes, 32 ranks, no LB)

1 1 1 1 1 1 1 1

NIPI Baseline (smoothed)
VT k-1 (smoothed)

100 200 300 400 500 600 700 800 900 1000

PIC Iteration (1000 iterations)

Sandia
National
laboatories

17



Initial Results for Q1 Problem

0.5

0.4
o
a))

0.3

0.2

° 0.1

VT LB Effect
(kahuna, 16 nodes, 32 ranks, w/HierarchicalLB)

VT k=1 (NoLB)
VT k=4 (HierarchicalLB

100 200 300 400 500 600 700 800 900 1000

PIC Iteration (1000 iterations)



Conclusion

■ DARMA project R&D is transitioning to a more application-
driven approach for programmatic reasons

■ Building new distributed-memory programming model abstractions
driven by application needs

■ Research focused on runtime performance analysis and
tuning, with a focus on distributed load balancing

■ EMPIRE-PIC needs a highly scalable distributed load balancing
algorithm that is communication-aware

■ Philippe Péba9 will discuss our on-going research on distributed LB

Sandia
National
Laboratories

19


