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What is DARMA?
Sandia
National
Laboratories

■ DARMA provides C++ abstractions for asynchronous many-
task (AMT) programming models

■ Driven directly by Sandia's application needs

■ Was previously part of Sandia's ATDM (Advanced Technology,

Development, and Mitigation) program, building a technical roadmap

for next-generation code development

■ Recently migrated to CSSE (Computational Systems & Software

Environment)

■ History

■ Many years ago it was a resilience project

■ In 2015, surveyed and evaluated existing AMT runtimes

■ In 2016-2017, built C++ abstractions to bridge AMT models

Focused on sequential semantics and advanced PM abstractions
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What is DARMA?
Sandia
National
Laboratories

■ In 2018-now:

■ Focused on producing AMT runtime software for EMPIRE, a full-

fledged Sandia application

Building flexible PM abstractions that interoperate with MPI

Researching distributed load balancing strategies for large-scale

deployment

— Philippe Péba9 will talk about ongoing LB research after this

■ Less emphasis on bridging the gaps across existing AMT runtimes

■ More emphasis on building production quality software for AMT

■ DARMA team works closely with the EMPIRE team

EMPIRE development used as a catalyst to drive programming model

research

Goal: to reimplement parts of EMPIRE with DARMA to reap benefits from

load balancing
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vt (Virtual Transport)

■ In 2017, VT was originally initiated as a "backend"

■ Started as a lower-level runtime

■ Provides maximum MPI interoperability

■ Does not strictly follow a specific PM (PERL mentality)

■ Design requirements

■ Abstracts data movement

■ Provides easy, thin endpoint virtualization

■ Asynchronous, distributed event completion & coordination

■ Thin layer on top of MPI

Has some analogous constructs to MPI

■ Written entirely in C++: mostly C++11 (with a little C++14)

Compiles with gcc 4.9, clang 3.9, Intel 18

■ Open-source license (on Github, will be public soon)

Sandia
National
Laboratories

4



vt (Virtual Transport)

■ Control abstractions

Sandia
National
Laboratories

■ A "node" -> MPI rank

While it can spawn threads, the primary use case is with Kokkos kernels

■ A "Pendingsend" -> the root of a task subtree

An operation that you may use to sequence wrt another action

■ A "group" -> MPI group

A subset of nodes with a associated communicator VT builds for you

Can be constructed collectively or rooted

■ A "virtual context" -> a migratable C++ object providing handler state

Similar to a Charm++ chare with different semantics

■ A "virtual context collection" -> a set of virtual contexts

Similar to a Charm++ chare array

■ An "epoch" -> a collective/rooted group of operations

Perform termination over a subset of control/data operations
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vt (Virtual Transport)

■ Data abstractions

■ An "active message" -> a C++ POD object

May be serialized or not

May be sent to a handler or destination-oblivious endpoint

■ RMA (Remote Memory Access)

Directly access memory owned by another task or node

— Reduces copying and overdecomposition overheads

May get/put data directly to a node or virtual context

May or may not use hardware primitives (depending on type)

— Subset of functionality is currently backed by MPI one-sided

Has windows similar to MPI which can be linked to an epoch

■ Load balancing

■ HierarchicalLB from HPDC'12 paper: Work Stealing and Persistence-
based Load Balancers for Iterative Overdecomposed Applications

Jonathan Lifflander, Sriram Krishnamoorthy, Laxmikant V. Kale
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vt (Virtual Transport)

• Over 2 years of development
• 55k lines of code (sloccount)

• >600 unit + integration tests

• Successful mini-app runs on 100k+ cores of Trinity

• Software engineering
• The team as grown significantly that works on VT

• We are working on improving software engineering processes

Code reviews, automated testing

• Has a combination of research/experimental and production
components

Sandia
National
Laboratories
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EMPIRE Physics Application

■ Electromagnetic/electrostatic plasma physics application
■ Encompasses particle-in-cell (PIC), fluid, and hybrid

■ Uses Trilinos for solvers and STK (Sierra Toolkit) for meshing

■ Part of Sandia's ATDM program

Goal: build the next-generation apps that will replace the current

production ones

Expected to replace current production capability in —3-5 years as it is

hardened, verified, and validated

■ Currently, the DARMA team is focused on a part of EMPIRE-PIC

Met a hard deadline in FY19-Q1 to demonstrate the feasibility of the

DARMA software stack to improve performance through load balancing

Built a proof-of-concept overhaul of the PIC portion in EMPIRE in Q1

Currently finishing the full DARMA implementation of the EMPIRE-PIC

code on the main branch of EMPIRE

Sandia
National
Laboratories
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EMPIRE-PIC: MPI iteration structure

■ In MPI, each rank has:

■ A single piece of the mesh, decomposed a priori

■ The set of particles that reside in that spatial region

■ Each PIC iteration (at a high level):

• (1) Perform all the "pre-move" particle-related operations
Particle injection, weight fields (associated with mesh)

• (2) Execute the PIC move kernel

Particles traverse elements of the local mesh block

Send/receive any outgoing/incoming particles at local mesh boundaries

• (3) MPI all-reduce counting particles received

If count is non-zero, go to (2); else PIC move is complete go to (4)

■ (4) Perform post-move operations

Sort particles, update counts, weight charge

• (5) Run the solver on the fields (in Trilinos)

Sandia
National
Laboratories
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Spatial region (4 MPI ranks in 2D) Replicated spatial egion (k=3)

EMPIRE-PIC Tasking Challenges
Sandia

1%21 National
Laboratories

• Overdecomposing existing mesh blocks in EMPIRE is difficult

• Mesh may be unstructured

• Baseline mesh decomposition is fixed

Solver (Trilinos) and other parts of the code will not change

• Sierra Toolkit handles mesh decomp and ghosting

• In FY19-Q1, replicate mesh blocks to overdecompose

• Each MPI rank creates k replicants that operate across the same
spatial region

• VT collection uses a 2D indexing scheme to identify elements: (rank,k)

• When a move pushes a particle to a neighbor, pick any replicant for
the appropriate region (rank,O..k-1) to invoke the kernel

• Each iteration the replicants are updated with new solver data

• Longer term: 2-level mesh partitioning scheme is needed

10



EMPIRE Q1 Problem Mesh (16 ranks)
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EMPIRE Q1 Problem Mesh & Particles
Sandia

tali National-11 Laboratories
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EMPIRE Q1 Problem Mesh & Particles Animation
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EMPIRE-PIC Tasking Challenges
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■ PIC is composed of a partially ordered sequence of operations
performed varies depending on the physics

■ Each task/element in the collection does not know the sequence or
ordering constraints

■ Operations and ordering constraints vary across elements

■ After LB runs, we want operations to be dispatched locally
(unless there is data exchange)

■ Instead of broadcasting/point-to-points to start a given operation on
all collection elements, loop over local elements residing on a node
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EMPIRE-PIC Tasking Challenges
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■ MPI rank-based driver code (each rank drives physics for local

block)

■ Example sequence of PIC operations:

particle mover->setParticleDT()

particle mover->injectParticles()

pa rticle mover->weightFields()

particle_mover->acceleratePaticles()

Recursive particle move, send/recv, all-reduce, repeat

particle mover->sortParticles()

particle mover->updateCounts()

particle mover->weightCharge()

■ In the MPI code, these are strictly sequenced, but some may be

reordered, and possibly made concurrent
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Sender-side Ordering with Epochs

/* Every MPI rank */

auto col = vt::constructCollective<PIC Col>(vt::Range(nranks,k));

/* for each PIC-move iteration */

vt::EpochType move ep = vt::newCollectiveEpoch();

for (auto idx : localElms(col))

col[idx].send<DoMoveMsg,moveFunc>(vt::makeMsg<DoMoveMsg>(move ep));

vt::finishedEpoch(move ep);

Sandia
National
Laboratories

for (auto idx : localElms(col)) {

vt::PendingSend sort = col[idx].send<SortMsg,sortFn>(sortMsg, move ep);

vt::PendingSend cnt = col[idx].send<CountMsg,updateFn>(cntMsg, std::move(sort));

col[idx].send<WeightMsg,weightCharge>(weightMsg, std::move(cnt));

}
■ If vt : : PendingSend is not captured as a return value, the C++

destructor gets called immediately

■ Message gets sent with no extra cost

■ VT creates a new rooted TD epoch to recursively track operations rooted
at the message send

■ Dijkstra-Scholten engagement-tree termination detection for rooted epochs

■ 4-counter wave-based termination detection for collective epochs
16



Initial Results for Q1 Problem
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Initial Results for Q1 Problem
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Conclusion

■ DARMA project R&D is transitioning to a more application-
driven approach for programmatic reasons

■ Building new distributed-memory programming model abstractions
driven by application needs

■ Research focused on runtime performance analysis and
tuning, with a focus on distributed load balancing

■ EMPIRE-PIC needs a highly scalable distributed load balancing
algorithm that is communication-aware

■ Philippe Péba9 will discuss our on-going research on distributed LB
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