This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Optimizing a New DAR®&G&"~
Runtime for Load Balancing
EMPIRE

Presented by: Jonathan Lifflander (P1), SNL

Current Team:

Ulrich Hetmaniuk (NGA) Phil Miller (NGA)

Nicolas Morales (SNL) Philippe P. Pébay (NGA)
Meriadeg Perrinel (NGA) Hoby Rakotoarivelo (NGA)
Nicole Slattengren (SNL) Gary Templet (SNL)

NGA = NexGen Analytics, SNL = Sandia National Labs
Charm++ Workshop 2019, May 1-2"d
@ENERGY ANVISA
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &

Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

What is DARMA? W=

= DARMA provides C++ abstractions for asynchronous many-
task (AMT) programming models
= Driven directly by Sandia’s application needs

= Was previously part of Sandia’s ATDM (Advanced Technology,
Development, and Mitigation) program, building a technical roadmap
for next-generation code development

= Recently migrated to CSSE (Computational Systems & Software
Environment)
= History
= Many years ago it was a resilience project
= |n 2015, surveyed and evaluated existing AMT runtimes

= |n 2016-2017, built C++ abstractions to bridge AMT models
* Focused on sequential semantics and advanced PM abstractions

2

What is DARMA? W=

= |n 2018-now:

Focused on producing AMT runtime software for EMPIRE, a full-
fledged Sandia application

= Building flexible PM abstractions that interoperate with MPI

= Researching distributed load balancing strategies for large-scale
deployment
— Philippe Pébay will talk about ongoing LB research after this

Less emphasis on bridging the gaps across existing AMT runtimes

More emphasis on building production quality software for AMT

DARMA team works closely with the EMPIRE team

= EMPIRE development used as a catalyst to drive programming model
research

= Goal: to reimplement parts of EMPIRE with DARMA to reap benefits from
load balancing

8

vt (Virtual Transport)

= |n 2017, VT was originally initiated as a “backend”

Started as a lower-level runtime
Provides maximum MPI interoperability
Does not strictly follow a specific PM (PERL mentality)

= Design requirements

Abstracts data movement
Provides easy, thin endpoint virtualization
Asynchronous, distributed event completion & coordination

Thin layer on top of MPI
= Has some analogous constructs to MPI

Written entirely in C++: mostly C++11 (with a little C++14)
= Compiles with gcc 4.9, clang 3.9, Intel 18

Open-source license (on Github, will be public soon)

vt (Virtual Transport)

= Control abstractions
= A “node” -> MPI rank
= While it can spawn threads, the primary use case is with Kokkos kernels
= A “PendingSend” -> the root of a task subtree
= An operation that you may use to sequence wrt another action
= A “group” -> MPI group
= A subset of nodes with a associated communicator VT builds for you
= Can be constructed collectively or rooted
= A “virtual context” -> a migratable C++ object providing handler state
= Similar to a Charm++ chare with different semantics
= A “virtual context collection” -> a set of virtual contexts
= Similar to a Charm++ chare array
= An “epoch” -> a collective/rooted group of operations
= Perform termination over a subset of control/data operations

vt (Virtual Transport)

= Data abstractions

= An “active message” -> a C++ POD object
= May be serialized or not
= May be sent to a handler or destination-oblivious endpoint

= RMA (Remote Memory Access)

= Directly access memory owned by another task or node
— Reduces copying and overdecomposition overheads

= May get/put data directly to a node or virtual context

= May or may not use hardware primitives (depending on type)
— Subset of functionality is currently backed by MPI one-sided

= Has windows similar to MPI which can be linked to an epoch

= Load balancing

= HierarchicalLB from HPDC’12 paper: Work Stealing and Persistence-
based Load Balancers for Iterative Overdecomposed Applications

= Jonathan Lifflander, Sriram Krishnamoorthy, Laxmikant V. Kale 6

vt (Virtual Transport)

= Qver 2 years of development
= 55k lines of code (sloccount)
= >600 unit + integration tests
= Successful mini-app runs on 100k+ cores of Trinity

= Software engineering
= The team as grown significantly that works on VT

= We are working on improving software engineering processes
= Code reviews, automated testing

= Has a combination of research/experimental and production
components

7

EMPIRE Physics Application) e

= Electromagnetic/electrostatic plasma physics application
= Encompasses particle-in-cell (PIC), fluid, and hybrid
= Uses Trilinos for solvers and STK (Sierra Toolkit) for meshing

= Part of Sandia’s ATDM program

" Goal: build the next-generation apps that will replace the current
production ones

* Expected to replace current production capability in ~3-5 years as it is
hardened, verified, and validated

= Currently, the DARMA team is focused on a part of EMPIRE-PIC

= Met a hard deadline in FY19-Q1 to demonstrate the feasibility of the
DARMA software stack to improve performance through load balancing

= Built a proof-of-concept overhaul of the PIC portion in EMPIRE in Q1

= Currently finishing the full DARMA implementation of the EMPIRE-PIC
code on the main branch of EMPIRE

8
-

EMPIRE-PIC: MPI iteration structure) derm_

= |n MPI, each rank has:
= Asingle piece of the mesh, decomposed a priori
= The set of particles that reside in that spatial region

= Each PIC iteration (at a high level):

= (1) Perform all the “pre-move” particle-related operations
= Particle injection, weight fields (associated with mesh)

(2) Execute the PIC move kernel
= Particles traverse elements of the local mesh block
= Send/receive any outgoing/incoming particles at local mesh boundaries

(3) MPI all-reduce counting particles received
= |f count is non-zero, go to (2); else PIC move is complete go to (4)

(4) Perform post-move operations
= Sort particles, update counts, weight charge

(5) Run the solver on the fields (in Trilinos)

Spatial region (4 MPl ranks in 2D) Replicated spatial region (k=3)

Sandia
EMPIRE-PIC Tasking Challenges [W
= Overdecomposing existing mesh blocks in EMPIRE is difficult

= Mesh may be unstructured

= Baseline mesh decomposition is fixed
= Solver (Trilinos) and other parts of the code will not change

= Sierra Toolkit handles mesh decomp and ghosting

= |n FY19-Q1, replicate mesh blocks to overdecompose

= Each MPI rank creates k replicants that operate across the same
spatial region
= VT collection uses a 2D indexing scheme to identify elements: (rank,k)

= When a move pushes a particle to a neighbor, pick any replicant for
the appropriate region (rank,0..k-1) to invoke the kernel

= Each iteration the replicants are updated with new solver data

= Longer term: 2-level mesh partitioning scheme is needed

10

EMPIRE Q1 Problem Mesh (16 ranks)) e

EMPIRE Q1 Problem Mesh & Particles

type

o+

ey VAR

<D 5
LAA
SRS
S PN _HB-V

A5

M ZNT]

X

= ‘
RS |

KIS

EMPIRE Q1 Problem Mesh & Particles Animation th E"';m

charged particle type

7.0e+03

2000
1000
500

200 5
100 =
50=

20 &

NS R 5 < 5 10
Timestep : 0 2i
Simulation Time : 0

7.0e-01

gnitude

E_vec Field Ma

13

7| Netora

EMPIRE-PIC Tasking Challenges

= PICis composed of a partially ordered sequence of operations
performed varies depending on the physics

= Each task/element in the collection does not know the sequence or
ordering constraints

= QOperations and ordering constraints vary across elements

= After LB runs, we want operations to be dispatched locally
(unless there is data exchange)

= |nstead of broadcasting/point-to-points to start a given operation on
all collection elements, loop over local elements residing on a node

EMPIRE-PIC Tasking Challenges i) peona

= MPI rank-based driver code (each rank drives physics for local

block)

= Example sequence of PIC operations:

particle_mover->setParticleDT()
particle_mover->injectParticles()
particle_mover->weightFields()
particle_mover->acceleratePaticles()

Recursive particle move, send/recv, all-reduce, repeat
particle_mover->sortParticles()
particle_mover->updateCounts()
particle_mover->weightCharge()

= |nthe MPI code, these are strictly sequenced, but some may be
reordered, and possibly made concurrent

15

Sender-side Ordering with Epochs) e

/* Every MPI rank */
auto col = vt::constructCollective<PIC Col>(vt::Range (nranks,k));

/* for each PIC-move iteration */
vt::EpochType move ep = vt::newCollectiveEpoch();
for (auto idx : localElms (col))
col[idx] .send<DoMoveMsg, moveFunc> (vt: :makeMsg<DoMoveMsg> (move ep)) ;
vt::finishedEpoch (move ep);

for (auto idx : localElms (col)) {
vt::PendingSend sort = col[idx].send<SortMsg,sortFn>(sortMsg, move ep);
vt::PendingSend cnt = col[idx].send<CountMsg,updateFn>(cntMsg, std::move(sort));
col[idx] .send<WeightMsg,weightCharge> (weightMsg, std::move(cnt));
I* .. */

}
= |fvt::PendingSend is not captured as a return value, the C++

destructor gets called immediately
= Message gets sent with no extra cost

= VT creates a new rooted TD epoch to recursively track operations rooted
at the message send
= Dijkstra-Scholten engagement-tree termination detection for rooted epochs

= 4-counter wave-based termination detection for collective epochs
16

Initial Results for Q1 Problem i) o

Baseline MPI/VT Move Comparison
(kahuna, 16 nodes, 32 ranks, no LB)

05] I I T

MIPI Balseline| smO(l)thedl —
VT k=1

smoothed

=
O

Move time/iter (seconds)

=
—_
|
|

0 100 200 300 400 500 600 700 800 900 1000

PIC Iteration (1000 iterations)
17

Initial Results for Q1 Problem i) o

VT LB Effect
(kahuna, 16 nodes, 32 ranks, w/HierarchicalLLB)

| | | I

=
&y

VT k=1 (NoLB) ——
VT k=4 (HierarchicalLB) ———

— < <
N w -
! ! |

Move time/iter (seconds)

-
—_

O] I 1]] |] I 1
0 100 200 300 400 500 600 700 800 900 1000

PIC Iteration (1000 iterations)
18

Conclusion

th

= DARMA project R&D is transitioning to a more application-

driven approach for programmatic reasons

= Building new distributed-memory programming model abstractions

driven by application needs

= Research focused on runtime performance analysis and
tuning, with a focus on distributed load balancing

= EMPIRE-PIC needs a highly scalable distributed load balancing
algorithm that is communication-aware

= Philippe Pébay will discuss our on-going research on distributed LB

