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erview and Goal

Characterization of HED phenomena is challenging.

Modeling landscape is a blend of various disciplines (plasma, atomic,
condensed matter physics) and methods (magnetohydrodynamics,
particle-in cell, molecular dynamics, average-atom, DFT-MD, TDDFT).

Persistence of electron correlation and non-LTE conditions are the
greatest challenges for numerical modeling.

Ultimately want to avoid empiricism and a self-consistent, first-
principles method for the prediction ofWDM/HED phenomena.

Compare prediction of HED transport phenomena within various
methods (average atom, Kubo-Greenwood) with TDDFT.
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Electrical conductivity
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~(W)w) = 
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Coupled Electron-lon Many-Body Problem
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Theoretical Background

Sandia
National
Laboratories

Time-dependent (non-
relativistic) Schrödinger
equation for the many-
particle (molecular)

Hamiltonian.

Kinetic energy and
interaction of ions.

Kinetic energy and
interaction of electrons.

Electron-ion interaction.

External potential.
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Introduction to Density Functional Theory (DFT)
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National
Laboratories

[ 2V2 + vs (I.)] Oi (r) = EjOi (r) (Kohn-Sham equations)

vs (r) = v(r) +  
(5U + (5E„,

(Kohn-Sham potential)
(5n(r) (5n(r)

n(r, t) fi 02 (r, t) Oi (r, t) (Electronic density)
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The ABC of DFT (dft.uci.edu/doc/g I .pdf).
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Introduction to Time-dependent D

Real-time propagation

l . Prepare initial state from a static DFT calculation

v2
[ 2

+ vs (r)] Oi (r)

2. Solve the TD Kohn-Sham equations

( )

i c/03dt(r) [ V22 + vs(r)] 03(0

vs (r, t) = v (r, t) + v. (r, t) + v „ (r , t) ;---,- vr [n(r, t)] (r)

3. Compute observables in terms of time-dependent density

n(r, t)
z

fi 0',.:(r, t) Oi(r, t)
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Linear response

tickle the system

6n(q, t) =1

N
,
,
, observe how the,
, system responds

at a later time

Courtesy of N. Maitra and C. Ullrich (2018).

00
dT x(q, —q, T) v0 f (t — T)

, x(r", rt, co)
E-1- (r, ri, w) = (5(r - 11 + f dr'  

1r - r"

Compute various transport properties (stopping power,
conductivity, dynamical structure factor).
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Sandia's Implementation •fTDDFT

Implementation of TDDFT-Ehrenfest MD in VASP
• Andrew D. Baczewski et al., PRL I I 6, 115004 (2016)
• Plane wave basis

• Projector-augmented wave (PAW) formalism

• Crank-Nicolson time integration (unitary)

• Generalized minimal residual method

Scales well on DOE machines
• Typically 100s of cores, a few hours

• No "free" parameters

• takes mass density

• # of electrons

• exchange-correlation functional

QUANTUMESPRESSU

Ell< code

Coupled electron-ion equations of motion

t) = {- v (r, (r, t)
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64 atoms, 368 orbitals
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Stopping Powe in Warm Dense Targets
Sandia
National
Laboratories

Example: Hydrogen
moving through cold, bulk
aluminum in a channeling
trajectory
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Stopping mechanisms
• Nuclear stopping (lattice vibrations)
• Electronic stopping (electronic excitations)

Large body of literature for cold targets
• Empirical approximations (Rutherford,Thomson, Bohr, Bethe)
• Parameter-free atomistic simulations
• Electronic structure coupled to molecular dynamics
• Cold stopping power (Echenique, Correa, Artacho, Schleife)

Exploding pusher
D3He proton source

Source Drive
20 beams

U C

Target Ilir Ag-coated
tube

lcm

5102 shell 870um

860i.tm diameter
2.3pm thickness

Subject DrivAef t

proton,

532um 
)1b

800pm

Zylstra et al., Phys. Rev. Lett. I 14, 215002 (2015).
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Stopping Power in War Dense
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National
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• Stopping at l 0 g/cc (mass density) and 2 eV (temperature)

• Force vs. projectile distance: Similar across velocities

• Work vs. projectile distance: Spikes represent ions

• Electronic work vs. projectile distance: Slope
represents stopping power
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Electri I Conductivity from TDDFT

Linear response:

Real-time:
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Lithium under ambient conditions
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Baseline (simple metal)

10
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Reference data:
Handbook of Optical Constants of Solids, Academic Press (1998)

Lithium (solid density, T=300K)

Exp. (Lynch et al., 1985)
TDDFT (LR)
TDDFT (RT)

Electrical conductivity
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Copper nder ambient conditions

Baseline (a somewhat more complex metal)

102

10

10-3
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- TDDFT

Electrical conductivity
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Inverse dielectric function
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Frequency [eV]

Sum rule Error Relative error

Experiment -1.50 -0.07 0.04

TDDFT (I) -1.41 -0.15 0.10
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lsochorically heated Aluminum
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Aluminum (T=0.5 eV, 2.7 g/cc)

Electrical conductivity

TDDFT

DFT-MD-KG (Witte et al., 2018)

Exp. 300K (Smith et a ., 5)
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Experiment -1.577
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Inverse dielectric
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Dynamical Structure Factor from Real-time TDDFT
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Avoid Chihara decomposition:

S(q, w) = fi(q) p(q)12 Si, (q, co) Z fS„(q,w) Sbf (q, co)

Bound electrons following ions

Probe system with x-ray:

v(r, t) = vo e2q rf(t)

= 
sin(9/2)

Ao

Ao : probe wavelength (2Å)

Record density response:

Free el ctrons Photoi nized
elec rons

ri(q, t) = dT x(q, —q, T) vo f (t — T)

Apply dissipation-fluctuation theorem:
1 a[vq, cA))]

x( cl, w) S 1 w ) = 1 — e—w/T
C11 

\ 
= vn(of(w 

(c1
)

PRL 116, 115004 (2016) PHYSICAL REVIEW LETTERS
week ending

18 MARCH 2016

X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition

A. D. Baczewski.L. L. ShuIcnburgcr.2 M. P. Dcsjarlais.2 S. B. Hanscn.2 and R..1. Magyari
'Center for Computing Research, Sandia National laboratories. Albuquerque. New Mexico 87185. USA
2Pulsed Power Sciences Center, Sandia National laboratories. Albuquerque. New Me.xico 87185, IJSA
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Dynamical Structure Factor from Linear-respons D
— -1=

Mermin approximation to the dielectric function:

EM (q, w) = 1 +
v(w) ERP A (q,w+iv(w))-1

(1 + ill(ww)) [CRP A (q, w + iv GA))) — 1]

1 +  w eRP A (ci,o) _1 E
()
to
0 10

Ab-initio collision frequencies from Drude-fit to ,-i

TDDFT electrical conductivity. i
15

lim,_,0 a(w)R (aD )

Mermin approximation with ab-initio collision
frequencies from TDDFT (MA-AICF-TDDFT).
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Aluminum (T=0.5 eV, 2.7 g/cc

vfriA = 1.6eV

TDDFT

DFT-MD-KG (Witte et al., 2018)

Exp. 300K (ŠtRai et a . 1985),,
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m
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Comparison to Expe
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Sperling, et al. (2015)
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MA-AICF-TDDFT

TDDFT
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Energy [keV]

8.00

Free-Electron X-Ray Laser Measurernents of Collisional-Damped
Plasmons in lsochorically Heated Warm Dense Matter
P. Sperling, E. J. Gamboa, H. J. Lee, H. K. Chung, E. Galtier. Y. Ornarbakiyeva, H. Reinholz. G. Ropke, U. Zastrau. J.
Hastings, L. B. Fletcher, and S. H. Glenzer
Phys. Rev. Lett. 115, 115001 - Published 9 September 2015
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Warm Dense Matter Demonstrating Non-Drude Conductivity from
Observations of Nonlinear Plasmon Damping

B. B. L. Witte, L. B. Fletcher, E. Galtier, E. Gamboa, H. J. Lee, U. Zastrau, R. Redmer, S. H. Glenzer, and P. Sperling

Phys. Rev. Lett. 118, 225001 - Published 31 May 2017
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Comparison to Experiment: Temperature in TDDFT
'Mr
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A Closer Look at the Bound-free Feature
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Capability to predict first-principles transport
properties of HED from TDDFT

• Systematic approach with minimal need for post-processing

• Better scaling in real time than in energy domain

• Nonlinear effects

Support other simulation tools

• Constrain parameters in average-atom models

• Validate DFT-MD Kubo-Greenwood results

• input for resistive magneto-hydrodynamics

Support interpretation of experiments

• Combine TDDFT tools to provide consistent predictions

• Recent experiments at LCLS

• lsochorically heated and shock-compressed materials
(such as Al and Cu)

Collaborators

• Andrew D. Baczewski (Sandia National Laboratories)

• Stephanie B. Hansen (Sandia National Laboratories)

Advertisement

• Poster session:"Transport properties of magnetized warm
dense matter using time-dependent density functional
theory",Andrew Baczewski

Thank you for your attention!
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Multiscale Science
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•

Quantum
Monte Carlo,
Quantum
Chemistry

DFT code',

electronic
scale (nm)

Experimental

Data
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Multiscale Science
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Multiscale Science
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Ann E. Mattson et al., International Journal of Quantum Chemistry (2016), DOI: I 0.1002/qua.25097.
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Interplay between Theory, Simulations, and Experiment
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Electronic structure
theory provides
input to magneto-
hydrodynamics
simulations.

Computational
fluid

dynamics

Electronic
structure
theory

HED experiments
and diagnostics

benchmark theory.

HED
experiments

Computational fluid
dynamics simulations
support design of
HED experiments.

LCLS

Stopping power

Measurement of Charged-Particle Stopping in Warm Dense
Plasrna
A B Zylstra. J A. Frenje. P E Grabowski. C. K LI. G W Collins, P Fitzsimmons, S Glenzer, F Graziani,
S B. Hansen, S. X. Hu. M. Gatu Johnson. P Keiter. H. Reynolds. J. R. Rygg, F. H. Seguin. and R. D.
Petrasso

Rev. Lett. 114 215002 - Published 27 May 2015

0E 1 0

Ox 
= 7) 

(Tt
(E)

Electrical conductivity
Free-Electron X-Ray Laser Measurements of Collisional-Damped
Plasmons in lsochorically Heated Warm Dense Matter
P. Sperling. E. J. Gamboa. H. J. Lee, H. K. Chung. E. Gaiter. Y. Omarbakiyeva. H. Reinholz. G. ROpke. U. Zastrau. J.
Hastings, L. B. Fletcher. and S. H. Glenzer
Phys. Rev. Lett 1.15.115001- Published 9 September 2015

J (w) 
(w) =

E(w)

Dynamic structure factor

ETTER
111.1014111...ffitIADO

A higher-than-predicted measurement of iron
opacity at solar interior temperatures
, k B.kl'. i Sagnmse. G. P Wiwi . G. A Socha. . C. illaixardj. I W00% Pk Cum'. G Fasarder', C I Fon.%
Fi.ra9..1. ride.. 11. rimed 1 t?wiline. N9mp. P. Ebro/ .1. 1.1IsSedrio., I.Clinelotl74.11abir', Carlin%

1 a[x(q, w)]S(q,w)= 1 e—w/kBT
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Warm De Matt

Coulomb coupling parameter

V Ze2
F = — = 

T rABT

Electron degeneracy parameter
k B T

0 =
EIF

Warm dense matter regime

F 1 , 1
10 1 102 1

Density (grams centimeter')

Basic Research Needs for HEDLP, Report of the
Workshop on HEDLP Research Needs, DOE (2008).

1 oh
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erating Warm se Matter in the Lab
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Creating HED conditions requires
transferring an enormous amount of energy
to a target in a very short period of time.

Z Machine, Sandia National Laboratories.
(https://www.sandia.gov/z-machine/about_z/how-z-works.html)

Compression of energy in time and space in
pulsed power facilities (Z machine) enables
exciting science (astrophysics, planetary
science, inertial confinement fusion).

Z Machine, Sandia National Laboratories.

Background acangi@sandia.gov



Time Scales

Time taken for
light to cross

1 mm (3 ps)

Switching of

world's fastest
transistor (1.2 ps)

Pillecond
12

f 

f

Period of electron orbit

in hydrogen (150 as)

Time step in
molecular dynamics

simulations (—I fs)

lime step in
electronic dynamics

simulations (-1 as)

I I,
Femtosecond Atto ond Zeptoseconds

104's 10 8 

r
S 101 S

Rotational correlation

time of water (1.7 ps)

Period of optical

phonon in Si (64 fs)

Fa.stest chemical
reactions (200 fs)

f
Shortest laser pulse
as of 2013 (67 as)

_AA I

4111-11P.

I
Time for light to cross

3 hydrogen atorns (1 as)

•

1
Quark/gluon

time-scales (1 ys)

1
Yoct econd

1 24 sis
Lifetime of IN and Z

bosons (0.3 ys)

Pehod of electromagnetic

radiation at gamma-ray/
X-ray boundary (17 zs)

Courtesy of K. Dewhurst, Max Planck Institute of Microstructure Physics (2015).
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Introduction to Density Functional Theory (DFT)
Sandia
National
Laboratories

Hard problem

Schrödinger view

v2

[ 2 +

vs (r) =

vs (r)

Properties of atoms,
molecules, and

materials

Formally

equivalent

 ] Oi (r) = EjOi (r)

, , ( 5  ii,„
vm 

8U 
+ + 
önr ön(r() )

n(r) = Y., O'i< (r)Oi (r)
i

"Easy"
problem

•

DFT view

(Kohn-Sham equations)

(Kohn-Sham potential)

(Electronic density)
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•

•

0.2 0.4 r 0.6 0.8 1

The ABC of DFT (dft.uci.edu/doc/g I .pdf).
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Definitions ofTransport Properties

= xi(w) +ix2(w)

- 1P fp° clbi X2P1) 
7 cut — w

— f cc dcAl Xi(ci)
7 cA) w

a
E(w) = 1 + 47 i —

w

~(w) —
2
co ,s• [ .\/€ (w)]

c
1 dA(t) 

E(t) = 
c dt

J(t) = — ?c2: f dr 475; (r)[k(t), 110j (r)

J(w) = a (w) E(w)
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27r
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Stopping Power in Warm Dense Targets
Sandia
National
Laboratories

Example: Hydrogen moving
through cold, bulk aluminum in
a channeling trajectory

Oh,' 1 0  
A A_b »;)
ux 11)

Stopping mechanisms
• Nuclear stopping (lattice vibrations)
• Electronic stopping (electronic excitations)

BO MD

) 0 0 0 (
) 0 0 0 (
) 0 0 0 (
) 0 0 0 (
) 0 0 0 (
) 0 0 0 (
) 0 0 0 (

Eh renfest M D

O 0 0
O 0 0
O 0 0
O 0 0
O 0 0
O 0 0 (
O O O

Large body of literature for cold targets
• Empirical approximations (Rutherford,Thomson, Bohr, Bethe)
• Parameter-free atomistic simulations
• Electronic structure coupled to molecular dynamics
• Cold stopping power (Echenique, Correa, Artacho, Schleife)

St
op
pi
ng
 f
or

ce
 

Target chamber, National Ignition Facility,
Lawrence Livermore National Laboratories.

Exploding pusher
D3He proton source

Source Dnve
20 beams

lcm

Si02 shell 870pm

860µm diameter
2.3pm thickness

Subject DI t t

4rAg-coded
tubc

x ,ays

proton

532pm
800pm

Zylstra et al., Phys. Rev. Lett. I 14, 215002 (2015).
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Distribution of microscopic forces in warm dense beryllium
Sandia
National
Laboratories
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X-Ray Thomson Scattering

Hard x-rays

Measure inelastically

ws, qs scattered x-rays

Sample of WDM
(opaque to optical probes)

c,(-) = cui — ws

q = qi — qs
qs = 2qi sin(0/2)

• X-ray Thompson scattering probes density, ionization state,
structure, temperature, etc.
X-ray Thomson scattering in high energy density plasmas
Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 1625 - Published 1 December 2009

• Cross section is proportional to dynamic structure factor
d20- q ,

= aT
s S w, w)

qidQdw

—

- 1
Application 3: Dynamical Structure Factor acangi@sandia.gov



Dynamic Structure Factor from real-time TDDFT
■

Probe system with x-ray:

v(r, t) = vo e2q rf(t)

= 

sin(8/2)

Ao

Ao : probe wavelength (2Å)

Record density response:
oc

6n(q, t) = dT x(q, —q, T) vo f (t — T)

Apply dissipation-fluctuation theorem:

6n(q, w)

Vq, —141 w) = 
vo f (w)

[x(q, co)] 
S(T C4)) 7 1 e IkB

X-ray Thomson scattering in high energy density plasmas
Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 1625 - Published 1 December 2009

PRL 116. 115004 (2016) PHYSICAL REVIEW LETTERS 18 "IReCt116

X-ray 'Thomson Scattering in Warm Dense Matter without the Chihara Decomposition

A. D. Baczcwski." L. Shulcnburgcr! M. P. Dcsjarlais,2 S. B. Hansen.2 and R. J. Magyar
'Center for Computing Research, Sandia National laboratories. Albuquerque. New Mexico 87185, USA
'Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque. New Mexico 87185, USA
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