This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-5739C

Generalized Entropy Stable Weighted Essentially
Non-Oscillatory Finite Difference Scheme in Multi-Block
Domains

J. Brad Maeng * and Travis C. Fisher"
Sandia National Laboratories, Albuquerque, NM 87123

Mark H. Carpenter*
NASA Langley Research Center, Hampton, VA 23681

A new cell-centered third-order entropy stable Weighted Essentially Non-Oscillatory (SS-
WENO) finite difference scheme in multi-block domains is developed for compressible flows.
This new scheme overcomes shortcomings of the conventional SSWENO finite difference
scheme in multi-domain problems by incorporating non-dissipative Simultaneous Approxi-
mation Term (SAT) penalties into the construction of a dual flux. The stencil of the generalized
dual flux allows for full stencil biasing across the interface while maintaining the nonlinear sta-
bility estimate. We demonstrate the shock capturing improvement across multi-block domain
interfaces using the generalized SSWENO in comparison to the conventional entropy stable
high-order finite difference with interface penalty in shock problems. Furthermore, we test the
new scheme in multi-dimensional turbulent flow problems to assess the accuracy and stability
of the multi-block domain formulation.

L. Introduction

High-fidelity simulations have been taking a more decisive role in the design and analysis of complex engineering
systems in recent times. These types of simulations allow engineers to push the envelope of extreme flow physics
where no experimental means are available or just too expensive to conduct experiments. Especially, in computational
fluid dynamics simulations of compressible turbulent flows, they have become an indispensable tool to study unsteady
flows in and around complex geometries, and in extreme environments. Even though recent advances in computer
architectures and computing power have made larger simulations possible, these advances alone are not sufficient to
fully demonstrate high-fidelity simulations of large-scale compressible flows without proper numerical tools.

Many state-of-the-art high-fidelity simulations, such as Direct Numerical Simulation (DNS) or Large Eddy Simulation
(LES), utilize high-order numerical methods to efficiently compute and capture details in turbulent flows. Unlike
low-order schemes, high-order numerical methods often lose robustness in the presence of strong nonlinear flow features.
These nonlinearities could alter the behavior of the solution, or worse, terminate a simulation prematurely. Various
nonlinear stabilization methods have been developed in order to address this issue. Such techniques include flux limiting,
filtering, solution reconstruction-based methods like Weighted Essentially Non-Oscillatory and more. Although these
methods can mitigate adverse effect of strong gradients and spurious oscillations in flow solutions, constructing these in
a mathematically rigorous and provable manner has been difficult to achieve.

The summation-by-parts (SBP) framework with the simultaneous approximation term (SAT) penalties [[1] allows us
to design high-order difference operators that are conservative in finite domains and ensures consistency of the resulting
numerical method. With entropy stability analysis, we can design high-order methods that are conservative, consistent
and, importantly, provably stable. The resulting high-order numerical operators can provide an indispensable tool to
achieve stable high-fidelity computational fluid dynamics simulations. A provably entropy stable high-order finite
difference scheme was first introduced by Fisher and Carpenter [2] for the Navier-Stokes equations in finite domains.
They used the entropy stable dual-flux form satisfying the SBP property to construct the entropy stable Weighted
Essentially Non-Oscillatory scheme and demonstrated provable stability in the presence of strong discontinuities and in
turbulent flow applications.
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While it is possible to extend the entropy stable SAT penalty approach in [2] with the entropy stable WENO scheme
across discontinuous interfaces, the resulting multi-block domain coupling from the conventional SBP only does so
weakly due to the collocated nature of solution and flux points on boundaries. Yamaleev and Carpenter [3] have applied
an approach to address this for the conventional operator in spectral collocation schemes by incorporating upwinded
SAT penalties into the divergence operator and forming a WENO operator that exhibits some ability to apply stencil
biasing across domains. In this work we use the naturally stronger coupling that results from moving the solution points
into the domain interior and use non-dissipative SAT penalties to form a fully-coupled WENO operator with extensive
stencil biasing across the interface. The new generalized SBP framework allows solution and flux points to be specified
uniquely on the boundaries, similar to the cell-centered finite volume scheme, and will be shown to perform robustly.
We believe that the generalized entropy stable finite differences will be considerably beneficial for high-speed flow
simulations in curvilinear multi-block domains.

In the following sections, we present a new cell-centered third-order entropy consistent SBP operator and entropy
stable WENO finite difference scheme applied to multi-block compressible flow applications. We begin by reviewing
the entropy stable high-order finite difference method and entropy stability. Then, we introduce the generalized entropy
stable interface coupling. We present verification and demonstrations of the scheme in one- and multi-dimensional test
problems to test and assess the scheme’s ability to capture strong shocks and resolve turbulent flows.

I1. Governing Equations
In this study, we consider the calorically perfect compressible Euler equations in three dimensions in the form

u; + (fr)x, =0, xx € Q, t €[0,00), (D)
B(u) = g”"9, x; € 99, 1 € [0, o),
u(x, 0) = go(xx), xx € Q,

where u = (p, pv;, pE )T is a conserved variable vector, x; = (x, y, z) is the cartesian coordinates, f; is the conserved
inviscid flux vector, and v; = (u, v, w)” is the velocity vector. The boundary vector g”? is assumed to be well-posed
data. The inviscid flux vector is

fi = (pvi, pVIVK + PSik, PY2Vi + POaks PV3VE + POk, pviH)' ()

where H = E + f—) is the total enthalpy. The equation of state for the system is p = pe(y — 1).

I11. Entropy Stable High-Order Finite Difference

We describe the methodologies to construct the entropy stable high-order finite difference scheme.

A. Complementary Grid and Telescopic Flux Form

Complementary grids allow the finite differences to be expressed as simple flux differences. This property is
commonly referred to as the telescopic flux property and is important in satisfying the convergence of numerical solution
to a weak solution. We define the computational domain where N equally spaced solution points are defined

X = (x1, X2 xn)T x-=x+i+g(x -x), i=1 N 3)
s 5o ey s i L 2N N R L) EE) .

The flux points are defined at the boundaries of control volumes with the solution points not necessarily at the
centroid. There are N + 1 flux points for N solution points. In high-order finite difference methods, these flux points are
equally distributed in the domain interior, however, the spacing becomes irregular near the boundaries. The spacing
between flux points is defined by the following relation.

% =(%p,....xn), AX =PI, “)



where the differencing operator A is an N X (N + 1) matrix
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and P is a diagonal matrix whose entries contain the spacing norm between flux points.
The complementary grid enables us to express the spatial derivatives in telescopic flux form, with some manipulation,

as
fw)y =P 'AF = P Qf. (6)

where Q is a first derivative operator that satisfies the summation-by-parts (SBP) property and is described in the
following section. Operators that satisfy the generalized SBP property lead to consistent end fluxes, thus admit the
telescopic flux property.

B. Summation-By-Parts Operators

Summation-by-parts (SBP) operators [[1] are used to approximate derivatives in high-order finite difference schemes.
We lay out the first derivative operator used in this work. The first derivative approximation, D¢, is constructed as
follows.

D=P'Q P=P", PE>0, ££0
Q' =8-Q. @)
The spacing norm matrix #, which is restricted to the diagonal form for our application, contains the local grid spacing
information. The nearly skew-symmetric matrix Q is an undivided differencing operator where all rows sum to zero.

We define B for generalized SBP as
B =bibj —b_ibl;, (8)

which depends on the boundary interpolation vector b. The subscripts, -1 and 1, denote the left and right boundary in
the domain. Thus, the i"" component of b_; is equivalent to the (N + 1 — i) component of b;

b_iiy =binsi—i) i=0,...,N. )

The boundary interpolation vector b determines how end flux points are defined. For the conventional nodal finite
difference scheme, the SBP boundary vector is defined as

b1 =(1,0,...,0)", by =(0,...,0,1)T (10)

where the outer-most boundary SBP points coincide with the finite domain solution points at boundaries. Thus, 8 only
contains the first and the last entries of the diagonal matrix 8 = diag(—1,0,...,0, 1). However, for generalized SBP, the
outer-most boundary SBP points may not coincide with the outer-most solution points. This is achieved by the use of
boundary interpolation vector.

b_i = (b1,bsy...,bp,,...000, by =(0,...,bn,....,byb), (11)

where n;, refers to the number of points used in the interpolation of boundary points.
The first derivative approximation satisfying the SBP property mimics the integration-by-parts

XR XR
/ Puxdx = Puxl;® - / xudx, (12)
XL ; XL
discretely as
¢"PDu=¢" PP (B-Q")u=¢bblu-g¢b_ b’ u-¢" D' Pu, (13)



where ¢ = (¢1,...,0n)".
The (2-4-2) SBP operator is presented for the generalized cell-centered high-order finite difference scheme. For the
boundary interpolant defined by
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we have the following unique spacing norm and the differencing operators
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where the structure on the left boundary of @ is only shown to demonstrate. The interior coefficients, the last row shown
in Eq. (16), are repeated until the right boundary is reached. The same Q structure on the right boundary is assumed.

C. Entropy Stable Finite Difference Scheme
The semi-discrete form of governing equations Eq. (1)) in the flux form finite differences is

w + P Ad = Pl P k=1,23, (17)
where g};"’ and gllz nd are the interface and boundary penalty terms. For the following analysis, we drop the subscript
k since analysis can be applied in dimension by dimension fashion. The interface penalty is necessary to handle
multi-block domain configurations. For the purpose of this work, we disregard any boundary effects and only concern
ourselves with the interface effect. However, appropriate boundary penalty treatments can be found elsewhere [4-6].

1. Semi-Discrete Entropy Analysis

The aim of the semi-discrete entropy analysis is to show that the global semi-discrete entropy decay mimics the
continuous entropy condition of the conservation law. Details of regarding continuous entropy analysis can be found in
[2, 7] and references therein.

The semi-discrete entropy equation of Eq. (17)) is

w! Pu, + wl AF = wl g™ + wl gbnd, (18)
where w = (W(uy), ..., w(un))" is the vector of entropy variables. The diagonal norm SBP operator allows us to
manipulate the time derivative into

w! Pu, =17 PS, (19)

where S is the entropy. We can rewrite the semi-discrete entropy equation as

d , .
VP8, = —wiAR+wigh +wl g, (20)

This equation provides a sufficient condition for the stability of the inviscid flux, and penalty terms.
The entropy consistent inviscid semi-discretization for generalized SBP is defined to satisfy

wl Pu, + F|; - F|l_; =wl g™ + ngb"", 21

*The SBP operator used to obtain globally third-order accuracy is a (2-4-2) operator, which uses second order boundary and fourth order interior
stencils to obtain that order.



where F|_; and F|; are the entropy flux of the system interpolated onto the left and right boundary and the telescoping
property of the SBP operator Eq. (13) is used to establish the expression. If we substitute the semi-discrete form of the
governing equations (7)) into above, we establish the relation

wlAf = 1TAF = F|, - F|_,. (22)

This is the condition that the inviscid flux must satisfy for global entropy consistency in generalized SBP. Note that
this recovers the global entropy conservation condition for conventional SBP where the first and last flux points are
coincident with the first and last solution points

WTAf = lTAF = F(MN) - F(ul)

2. Entropy Conservative Inviscid Flux
The high-order entropy conservative inviscid flux for the generalized SBP finite difference scheme is defined in the
following relation

AFS = [2Q o 711, (23)

where Q is described in Eq. (16) and ¥ is a matrix whose row and column entries consists of the second-order two-point
entropy conservative inviscid flux [2] and o represents the Hadamard product. Theorems that prove that high-order
entropy conservative fluxes can be constructed from linear combinations of two-point-entropy conservative fluxes are
available in [2]. The high-order entropy conservative flux is written in closed form as

N i N N i N
f;S = Z Z 26}(1,k)f_(u1, I/tk) + Z Z —b_l,kb_lvjf_(u[, Mk) + Z Z bl’kbl,jf(ul, Mk), 1<i<N- 1, (24)
k=i I=1 k=i+1 I=1 k=1 I=1

where §; x) are the coeflicients of
A 1
Q=Q-=-8,
Q 2

and f (uy, ux) is a second-order two-point entropy conservative flux of Ismail and Roe [8].

3. Entropy Stability
An analogous condition to Eq. (21)) for entropy stability is

wl Pu, + 1TAF < wl gt + wl ghnd, (25)

If we substitute the semi-discrete conservation law, Eq. (18)), into the entropy stability condition above, we find that
entropy stable inviscid fluxes must satisfy ) .
w'AF > 17 AF?, (26)

where F*S is the entropy consistent entropy flux of the system. With Eq. (22), the entropy stability condition is given as
wlAF > wl AFS. (27)

where 5 is a numerical flux that satisfies the entropy consistency condition.

Remark on the Comparison Technique This local comparative entropy stability technique [7] used is proven to be
entropy stable in [2] for the conventional SBP high-order finite difference WENO scheme and is used to construct the
pointwise entropy stable WENO limiter used in this work. However, one ramification of the generalized SBP is we can
no longer prove entropy stability this way due to the non-collocated nature of the boundary solution and flux points.
Note that the entropy stability of the generalized SBP is valid in an infinite domain case, i.e. periodic domain. We are
actively seeking a proof. The comparison approach, without proof, for the generalized SBP operator has been used in
this work without stability issues.



D. Entropy Stable WENO Scheme

The entropy stable WENO scheme was introduced for high-order finite difference schemes in [2] for finite domain
application. A thorough implementation detail for entropy stable WENO including the formal boundary closure can be
found in [9] and for the (2-4-2) WENO operator in [10, 11]. In order to apply WENO as a main dissipative mechanism
in high-order finite difference schemes, it is important to cast the scheme in flux form, as shown in Eq. (17). The inviscid
fluxes used in the form are called the target fluxes, which have the desired order of accuracy.

s
fF=)df 0<i<N-1, (28)
=1

where ng; = 4 is the number of candidate stencils, f?’ are the candidate fluxes, and d’ are the target weights.

In WENO, the data across discontinuities are prevented from being used in the flux interpolation [[12]. We utilize a
nonlinear weight which can place negligible impact when discontinuities are encountered [11], and it is evaluated as
follows.

1 1 3l fl
ol=—i a=d1+="—]|, I=1...,n 29
e B +& * 29

1

where 7; is a full stencil smoothness measure, B,l is a candidate stencil smoothness measure, and §; is a scaling parameter.
The full stencil smoothness measure is

n _ 2
T 62p~1 .
7= (%(m“‘), ne =n; = p. (30)
= ox
And the candidate stencil smoothness measure is
& " al(w)\
ol _ 2m i\l
B! _n;(ax) ( S ) , (31)

where ¢£ is a unique p — 1 order polynomial fit of the solution over the candidate stencil. Then, the WENO flux is
s
R = D aif (2
I=1

The entropy stable WENO method must satisfy the entropy stability condition, Eq. (27)
(wis1 —w) (f55W - f5) <0, 0<i<N-1, (33)

where fl.s SW is the entropy stable WENO flux and f* is the entropy consistent inviscid flux described in Section II1.C.2.
The entropy stable limiting procedure that satisfies this condition is

2 2 _
= Yo - 0= T b=t - G- e= 10 ()
C

where b is the entropy stability comparison technique and derived from Eq. (27).

IV. Generalized Entropy Stable WENO Finite Differences for Multi-Block Domains

Defining WENO flux across a multi-block interface in the conventional high-order finite difference scheme is difficult
due to the collocated flux and solution points on the boundary point. The conventional high-order finite difference
scheme satisfying the SBP property defines flux points to be collocated on the domain boundary. While it is possible to
extend the entropy stable SAT penalty approach across discontinuous interfaces, the resulting multi-domain coupling
becomes weak.

In the generalized SBP, the cell-centered high-order finite difference scheme derived from Sec. [[IT can result in
naturally stronger multi-domain coupling. To demonstrate the difference, we illustrate two types of multi-block stencils
in Fig. [I. The conventional high-order finite difference stencil is shown in Fig. 1d where the solution points and the



flux points of two neighboring blocks coincide at the interface. In the cell-centered high-order finite difference stencil,
Fig. 1B, on the other hand, the solution and flux points no longer coincide at the interface leaving a clear choice to define
an interface flux.

L R L R -

(a) Node-centered (b) Cell-centered

Fig. 1 Configurations of the conventional node-centered and cell-centered high-order finite difference stencils
at a multi-block interface. The left, L, and the right, R, block are separated by an interface denoted by a vertical
line. Solution points and flux points are denoted by (e) and (x), respectively. Flux point locations are not to
scale.

A. Entropy Stable Multi-Block Interface Penalty
We first describe the global differencing operator for a two-block configuration. The first derivative operators for the
left and right block can be formed into the following global operator

lar o
Q—[O QJ, (3%)

From this, the multi-block domain telescopic flux form, Eq. (6), is constructed as follows.

— fl‘
ol

In this present form, the left and right block solutions are completely independent as no interface coupling has been
sought. This global differencing operator can be made nearly skew-symmetric by introducing the interface penalty
matrix.

AfL
Afr

_IRpLRKLT 1wLKRT
2b1 b1 , 2b1 b—lT
_1pR KL IRR KR
2b—1b1 2b—1b—1

G = (37

where b’l“ is a boundary interpolation vector that belongs to the left block, and bel is a vector that belongs to the right
block. The global two-block nearly skew-symmetric undivided differencing operator is

AF=(Q+G) [E . (38)

This general form can be used to describe the interface penalty for both conventional and cell-centered high-order finite
difference method. In what follows, we describe the entropy stable multi-block interface penalty and the entropy stable
WENO method in multi-block domain.

B. Generalized Entropy Stable Multi-Block Interface Penalty
At the multi-block domain interface, the general form of the interface penalty is,

g = {(-bibt" o FF (ww + bIBE o FF (u,w)
1 i
~SERIAIR’ (bt w- b5/ w)}
- {(—b’flb{‘T of (wu) + b’_elbl_elT oS (u, u))

1 5
~5bX RIAIR” (b%w- blLrw)}, (39)



where o denotes a Hadamard product of matrices and fS is an entropy consistent numerical flux, which is non-dissipative.
As aresult, a Roe-type dissipation term can be added to introduce additional dissipation at the interface. The Roe-type
dissipation requires a symmetric decomposition of the flux Jacobian, A = R|A|R”, which is made possible by utilizing
entropy variables, w. Note that this generalized form of entropy stable multi-block interface penalty recovers the
interface penalty formulation for the conventional high-order finite difference scheme. This form of the interface penalty
is a generalized approach shown in [6].

C. Entropy Stable WENO for Interface

For cell-centered high-order finite differences, the flux and solution points do not coincide at the multi-block interface
as demonstrated graphically in Fig. [Ib], and we can leverage this property to devise a WENO scheme across an interface.
The SBP boundary closure determines the number of unique boundary points. For a third-order high-order finite
difference method, four boundary points from both the left and right blocks are required for closure. This suggests that
the number of candidate stencils for the interface WENO method is ng = 8, instead of ny = 4 required for a single-block
domain. The extension of the formal boundary closure in [9] is made to derive necessary interpolation operator and
nonlinear weights for the interface operator.

Decrease bias Standard bias

L4 L3 LL L 0 R RR R?

Fig. 2 At the multi-block interface, the WENO flux at 0 flux point is calculated using the stencil biasing
mechanic that places larger influence on the candidate stencils that belong in the same block domain as the flux
point being considered. Flux points are (x) and solution points are (e).

In addition, the stencil biasing introduced in Section [II.D] must also be altered in order to provide an appropriate
upwind biasing. In Eq. (29), the biasing is based on a four candidate stencil configuration. However, in the entropy
stable interface WENO, there are eight candidate stencils. One way to introduce upwind biasing is to assign different
weights to upwind and downwind stencils. For the right-going wave, as illustrated in Fig. 2, we can modify the weight
biasing as
613(1+[¥TT5&), if 1 € [0, R, RR, %]

- =1 B
yd§(1+L), ifl e [L,LL, L3 L*]

Bl+é&

&f: L= 15 5 saiflss (40)

where y < 1 is a scaling factor to reduce the influence of the neighboring block stencils in the biasing process. The left
going wave case is similarly treated.

V. Numerical Results
A. Verification

1. Method of Manufactured Solution - Euler Verification
The method of manufactured solution (MMYS) is used to verify the inviscid discretization in the Euler equations.
The equation we want to solve includes a source term

u, +f, =s, 41

where the conserved variable vector is u = (p, pu, pE)", the conserved flux vector is f = (pu, pu® + p, puH)", and the
source term is s. For the initial condition

(p,u, T) = (2 + cos(mx), 2 + cos(mx), 2 + cos(mx)), (42)



the source term is
27 sin(mrx)(cos(mx) + 2)
s =—| msin(zx)(cos(mx) + 2)(2R + 3 cos(nx) + 6) |, (43)
7 sin(mx)((cos(rx) + 2)*(3¢p, + 2 cos(mx) + 4),
where R is the gas constant and ¢, is the specific heat constant. The computational domain is defined —1 < x < 1 and

the simulation is ran to = 0.1. We ran the Euler code in both a single and a two-block configuration to verify the
accuracy of entropy stable WENO scheme.

Table 1 Entropy stable cell-centered high-order finite difference WENO scheme error convergence in a single
block, Euler MMS

N h ‘ e(p) Rate ‘ e(u) Rate ’ &(T) Rate
32 | 6.06E-02 | 1.02E-03 5.96E-03 5.28E-01

64 | 3.08E-02 | 5.67E-05 4.27 | 1.07E-03 2.53 | 5.66E-02 3.30
128 | 1.55E-02 | 4.09E-06 3.84 | 8.77E-05 3.66 | 4.29E-03 3.76
256 | 7.78E-03 | 2.80E-07 3.89 | 591E-06 391 | 2.87E-04 3.92
512 | 3.90E-03 | 1.81E-08 3.96 | 3.80E-07 3.97 | 1.83E-05 3.98

Table 2 Entropy stable cell-centered high-order finite difference WENO scheme error convergence in a two-
block domain, Euler MMS

2N h ‘ e(p) Rate‘ e(u) Rate‘ e(T) Rate

32 | 5.88E-02 | 9.03E-03 3.92E-02 3.51E+00

64 | 3.03E-02 | 3.57E-04 4.87 | 1.22E-03 5.23 | 3.63E-01 3.42
128 | 1.54E-02 | 3.04E-05 3.64 | 9.73E-05 3.73 | 2.92E-02 3.72
256 | 7.75E-03 | 2.10E-06 3.90 | 6.89E-06 3.86 | 1.97E-03 3.93
512 | 3.89E-03 | 1.35E-07 3.98 | 436E-07 4.01 | 1.27E-04 3.98

2. Viscous Shock - Navier Stokes Verification
A viscous shock problem [[13] is used to verify the accuracy of the Navier-Stokes discretization, inviscid and viscous
discretizations. The governing equations now must include the viscous flux vector

f,(cv) = (0, T1ks T2ks T3k Tik Vi — Gk) " » (44)
where the heat flux is gy = —«T, and the shear stress tensor is
2
Tij = | i)y + Vi), — 5ij§(Vl)x1 ) (45)

and u is the fluid viscosity. This form of governing equation is used again for the multi-dimensional Taylor Green vortex
problem later on. Details regarding the discretization and stability of the viscous terms are detailed in [13].

A convecting viscous shock with a constant width initially positioned at xp = 0.5 in a one-dimensional domain
0 < x < 2 and is simulated until + = 0.1 at which point an exact solution can be evaluated, see [13] for the derivation of
this verification problem. The viscosity value of u = 5 was used for a freestream Mach number flow Ma = 2.23. We
show the L, norm error of primitive variables for a single and a multi-block domain configuration. In the multi-block
case, the domain was divided into two with the multi-block interface located at x = 1. We observe the expected
third-order convergence rate in both cases.



Table 3 Entropy stable cell-centered high-order finite difference WENO scheme error convergence in a single
block, viscous shock

N h ’ e(p) Rate ’ e(u) Rate ‘ e(T) Rate
64 | 3.08E-02 | 9.35E-02 3.76E+02 7.92E+05
128 | 1.55E-02 | 4.79E-02 0.977 | 1.93E+02 0.971 | 4.08E+05 0.969
256 | 7.78E-03 | 1.17E-02 2.04 | 4.73E+01 2.04 | 1.00E+05 2.04
512 | 3.90E-03 | 1.45E-03 3.03 | 591E+00 3.01 | 1.27E+04 2.99

Table 4 Entropy stable cell-centered high-order finite difference WENO scheme error convergence in a two-
block domain, viscous shock

2N h ’ e(p) Rate ’ e(u) Rate ‘ e(T) Rate

64 | 3.03E-02 | 1.19E-01 4.77TE+02 1.00E+06

128 | 1.54E-02 | 6.89E-02 0.803 | 2.79E+02 0.792 | 5.89E+05 0.784
256 | 7.75E-03 | 1.71E-02 2.03 | 6.91E+01 2.03 | 1.46E+05 2.03
512 | 3.89E-03 | 2.09E-03 3.05 | 8.52E+00 3.04 | 1.82E+04 3.02

B. One-Dimensional Test

1. Shock tube

The Sod shock tube problem [14] is considered here to demonstrate the shock capturing capability of different

schemes. The initial condition is

o {(1,0, 1), if x <05 ™

(0.125,0,0.1), ifx > 0.5,

and the computational domain is 0 < x < 1. For this problem, we compare the conventional entropy stable node-centered
and the cell-centered high-order finite difference WENO schemes in a multi-block configuration. The entropy stable
penalty used in the node-centered high-order finite difference WENO is discussed in [2]. In cell-centered high-order
finite difference WENO, the entropy stable WENO method described in Section [V.C|is used to across two different
domains.

The density solution profile is shown in Fig. 3] The computational domain is divided into three sub-domains with
interfaces indicated by vertical dashed lines. Comparing with the reference solution, both WENO schemes resolve
the contact discontinuity and the shock well. Across the multi-block interface near the contact discontinuity, the
conventional node-centered high-order finite difference WENO scheme suffers from a slight oscillation as shown in

Fig. 3b.
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Fig.3 Sod shock tube density profile of the conventional high-order finite difference (HOFD) and cell-centered
high-order finite difference (CCHOFD), N = 512, t; = 0.25. The computational domain is divided into three
sub-domains with interfaces indicated by vertical dashed lines.

2. Shu Osher Problem

The Shu Osher problem [15] is an interaction of a strong normal shock front moving into a standing entropy wave
fluctuation. It is used to assess the numerical scheme’s ability to resolve turbulence-like features in a one-dimensional
flow. The initial condition is

(3.857143,2.629369, 10.3333), if x < —4.0
(p,u, p) = { 47)

(1+0.2sin(5x),0,1), if x > —4.0.

In Fig. @, the overall solution and the solution near the shock interaction region for the Shu Osher problem are shown for
a two-block configuration. The block interface is located at x = 0. Both schemes resolve the smooth portions of the
solution well. However, the difference between the conventional and cell-centered high-order finite differences becomes
clear in the shock interaction region. Neither scheme resolves the oscillatory portion of the solution well. We notice
that the cell-centered high-order finite difference WENO reproduces the reference solution marginally better than the
conventional high-order WENO scheme near the shock front, Fig. #b. Both schemes show some numerical artifact
produced as a result of the multi-block interface.

6
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(a) Density (b) Density close up

Fig.4 Shu Osher solution of the conventional high-order finite difference (HOFD) and cell-centered high-order
finite difference (CCHOFD) N = 512, t; = 1.8. The computational domain is divided at x = 0, and the interface
is denoted by a black dashed line. The reference solution uses N = 2000 cells.
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C. Woodward Colella

The Woodward Colella problem [[16] is a problem containing the interaction of two strong shocks. Two strong shock
waves formed at two fluid interfaces collide, then form a strong right-going shock wave. The right-going shock wave
reflect off an inviscid wall. The boundary condition on both boundaries is set to a slip wall condition [4]. This problem
tests not only the shock capturing capability of a numerical scheme but also the stability of a numerical wall boundary
condition. The initial condition is

(1,0,1000), if x <0.1
(p,u,p) =1(1,0,100), if0.1 <x<0.9 (48)
(1,0,0.01), ifx >0.9.

For the multi-block problem shown in Fig. [, the interface is located in the middle of the computational domain.
This test problem is more revealing than the previous two because the solution interacts in two different ways; (i) with
the multi-block interface and (i) the slip wall. The results are shown at ¢ = 0.04 after the initial disturbance reflects off
the wall and interact with each other.

As shown in Figs. 5/ and [6, the conventional high-order finite difference WENO scheme suffers significantly and
deviates from the expected reference solution. Both schemes suffer from numerical noise due to the strong shock
interaction in Fig. [ However, the cell-centered high-order finite difference scheme demonstrates superior shock
capturing behavior.
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Fig. 5 Woodward Colella solution of the conventional high-order finite difference (HOFD) and cell-centered
high-order finite difference (CCHOFD), N = 512, t; = 0.04. The multi-block interface is located at x = 0.5. The
reference solution is computed with N = 2048 cells.
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Fig. 6 Close up of the Woodward Colella solution N = 512, t; = 0.04. The multi-block interface is located at
x = 0.5. The reference solution is computed with N = 2048 cells.

D. Multi-Dimensional Test
In the following section, we demonstrate stability and accuracy of the cell-centered high-order entropy stable WENO

scheme in multi-dimensional problems.



1. Two-Dimensional Sod Shock tube
The two-dimensional Riemann problem is described by,

(],0,0,1), ifr <04

49
(0.125,0,0,0.1), if r > 0.4, )

(o,u,v,p) = {

where the radius is defined as r = /x2 + y2 and the computational domainis [-1 < (x, y) < 1]. This is a two-dimensional
analogue of the Sod shock tube problem considered in one dimension. This test demonstrates the shock capturing
capability in a multi-block domain in multi-dimensions.

A Cartesian grid with regularly spaced 807 cells is used to simulate the problem with the cell-centered high-order
finite difference WENO scheme for a single-block and multi-block configurations. In Fig. [7, density radial solutions at
t = 0.25 are shown for the single and multi-block configuration. For the multi-block configuration, the single block
mesh was sub-divided into 16 equally sized blocks. For the shown resolution, 802 mesh, each sub-block contains 202
cells. Both results predict all relevant flow features shown in the reference solution.

In addition to demonstrating the robust shock capturing ability on a multi-block mesh, the result also illustrates the
scheme’s ability to preserve the solution radial isotropy. Simulating a radially symmetric problem on a cartesian grid
will result in some grid induced error/anisotropy. As shown, the multi-block entropy stable WENO result shows a wider
density radial profile while the single block result does not exhibit as severe solution anisotropy. Along with the fact
there are multi-block interfaces, reduced dissipation across interface may have introduced grid induced anisotropy.
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Radius Radius
(a) 802 mesh, a single block (b) 802 mesh equally divided into 16 sub-blocks

Fig. 7 Radial density plot, 1 = 0.25. Reference solution evaluated on a 1280 mesh.

2. Taylor Green Vortex

The Taylor Green Vortex problem is a three-dimensional problem which contains cascading vortices that monotoni-
cally decrease in scale with time. It is used to compare the accuracy and robustness of a scheme. We use this problem
to assess the stable property across multi-block interfaces in three dimensions. The problem is solved on a periodic
domain [-7L < (x,y,z) < wL] and the initial condition is given by the following analytical expressions,

p(x,9,2,0)=1.0 (50)

u(x,y,z,O):Vosin(%) cos (%)cos(%) (51)

v(x,y,2,0) = -Vycos (%) sin (%) cos (%) (52)

w(x,y,z,0)=0 (53)
M2

p(x,y,20)=1.0+ y160 (cos (2%) + Cos (ZTy)) (cos (% + 2)) , 54)
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where the Mach number, M = 0.1 and the Reynolds number is set to 1600.

The direct numerical simulation result was obtained from a spectral method on a 512° mesh, which was provided as
part of the third international workshop on high-order CFD methods [17]. The single block mesh consists of 64° cells.
For this comparison, we divide the single block mesh into equally sized 8 sub-blocks, thus each block contains 323
cells, to compare the single and multi-block entropy conservative high-order finite differences. We compare several
schemes, namely, entropy conserving high-order finite differences in single and multi-blocks, entropy stable hybrid
WENO high-order finite differences in single and multi-blocks, and a low-dissipative fourth-order finite volume using
the Subbareddy and Candler flux [18] with a Mach number-based shock switch also included for reference.

In order to assess the accuracy of schemes, we calculate several quantities to compare: the total integrated kinetic
energy, its dissipation rate, and enstrophy. The total kinetic energy is

1 ViVi

p——dQ, (55)

Ep = —
pQ Q 2

where v; is the velocity vector. And the total enstrophy is

1 Wi Wi
(== [ p5%a0, (56)
where w; is the vorticity. This measure can be used as a theoretical kinetic energy dissipation rate, in addition to the
discrete kinetic energy dissipation rate evaluated from the kinetic energy [[19].

The shock capturing capability of a scheme often comes at the cost of degraded turbulence resolving capability.
This is because shocks and other strong nonlinear features require numerical dissipation for stability, which has a natural
tendency to smear out structures in high-fidelity flow simulations. In Fig. §, we show the kinetic energy of entropy
stable high-order finite difference WENO. In this case, WENO is applied everywhere in the flow and consequently is
manifested into lower kinetic energy values. For this reason, we have developed a hybrid WENO scheme that addresses
the issue of increased numerical dissipation by turning the dissipation mechanism on only when needed. This is achieved
by a shock sensor based on the dilation of the flow [[13, 20]. Our nonlinear stabilization method only activates when the
negative rate of dilation is observed.
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Fig.8 Total integrated kinetic energy comparison between entropy stable high-order finite difference (HOFD),
WENO (WENO), and a fourth-order finite volume (FV 40)

Total integrated kinetic energies for various schemes are presented in Fig. [9. Total kinetic energy results for entropy
conserving high-order finite difference schemes show good agreement with the direct numerical simulation result. There
is a small variation between entropy conserving high-order finite difference and the hybrid WENO scheme for both
single and multi-block configurations. The finite volume simulation, which is a kinetic energy preserving scheme,
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however, cannot accurately simulate the kinetic energy dissipation rate compared to the entropy conserving or stable
schemes.

Dissipation rates are presented in Fig. I0. The kinetic energy dissipation rate is simply evaluated by taking a central
difference of the total integrated kinetic energy of each scheme. The total enstrophy is calculated according to the
formula. We notice that all finite difference results replicate the DNS result well whereas there is some discrepancy in
the finite volume result. In all mentioned results, there is little to no difference between the single and multi-block

simulations.

— DNS
o ---- HOFD
A ---- HOFD-MB
\ —— Hyb. WENO
\
R Hyb. WENO - MB
---- FV 4o
0.10
3
$0.08
C
w
y
k]
c
&
0.06
0.04
0.02

0.0 25 5.0 7.5 100 125 150 175 20.0

Fig.9 Total integrated kinetic energy comparison between entropy stable high-order finite difference (HOFD),
and multi-block (HOFD-MB), hybrid WENO (Hyb. WENO), and multi-block (Hyb. WENO-MB), and a fourth-
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Fig. 10 Dissipation rate comparison between entropy stable high-order finite difference (HOFD), and multi-
block (HOFD-MB), hybrid WENO (Hyb. WENO), and multi-block (Hyb. WENO-MB), and a fourth-order finite
volume (FV 40)
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VI. Conclusion and Future Directions

In this paper, we have presented the generalized framework for entropy conservative finite differences and entropy
stable WENO scheme in multi-block domains. We first defined a generalized SBP-SAT framework which allows us to
construct a cell-centered high-order finite difference scheme. The newly developed cell-centered formulation not only is
conservative, consistent and can be proven entropy conservative. Additionally, the generalized SBP-SAT framework can
provide a stronger coupling at multi-block interfaces by introducing a skew-symmetric interface penalty operator. From
this, both a generalized entropy stable multi-block interface penalty and an entropy stable WENO can be designed. The
proclaimed benefit of generalized entropy stable WENO across multi-block interfaces is that the operator is no longer
weakly coupled due to uniquely defined cell-centered solution points at the domain boundary.

We have demonstrated the robustness and accuracy of the new cell-centered high-order finite difference and entropy
stable WENO scheme with one-dimensional problems. On the Sod shock tube and the Shu Osher problem, both the
conventional and the cell-centered high-order finite difference schemes exhibited similar results. On the Woodward
Colella problem, however, we observed that the conventional entropy stable high-order finite difference WENO scheme
exhibited a wrong shock speed after passing through the multi-block interface. The Woodward Colella problem is a
difficult problem, and consequently, the cell-centered entropy stable high-order finite difference WENO scheme also
suffered from numerical oscillation on and near the block interface. Overall, we have shown a favorable stability and
shock capturing property of the new cell-centered high-order finite difference WENO scheme.

In multiple dimensions, we have considered a two-dimensional analogue of the Sod shock tube problem. This
problem showed that the entropy stable cell-centered high-order finite difference WENO is stable for multiple blocks.
However, it exhibited a well-known grid imprinting issue. While it is an issue, we believe that the benefits of having
a robust multi-domain treatment would outweigh the slight numerical artifact from interfaces. In the Taylor Green
vortex problem, we observed that the entropy stable cell-centered high-order finite difference WENO is both stable and
accurate for a three-dimensional turbulent vortex cascade problem in a single and multi-block configuration. But it
was too dissipative to resolve fine turbulent structures. We have introduced a hybrid WENO scheme and demonstrated
improved turbulent scale resolving capability along with stability. The entropy stable schemes performed and compared
well against a well-established kinetic energy preserving finite volume scheme.

There are some points to address going forward. The entropy stable WENO stencil biasing can be studied in depth.
As mentioned, the candidate stencil width for the WENO scheme across multi-block interface is 8 due to the boundary
closure condition. For a third-order scheme, this number is excessive, and the stencil biasing mechanics becomes a
bit ambiguous and heuristic in nature. A more robust stencil biasing mechanic needs to be developed. We have seen
in two-dimensional Sod shock tube that multi-block scheme induces grid related anisotropy. This may be due to the
non-dissipative interface penalty. Even with some of these points to address, the extension to curvilinear multi-block
domains is straight-forward. In subsequent works, we plan to extend the current methodology to multi-dimensional
curvilinear multi-block domains with aforementioned improvements for high-speed compressible flow applications.
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