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Presentation Outline
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“*Continuum Hydrocode Simulations (CTH)
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*+*Conclusions & Future Work



; Shock Initiation of Explosives at Sandia
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+ Role of Porosity in Shock Initiation ()]

“*Some degree of porosity present in almost all energetic materials

“*Pore collapse can be key mechanism for hot spot formation

Many Single-Pore Collapse Studies
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“*Can we link particular porosity configurations/geometries with
some metric of likelihood for hot spot formation??
“*Use Multiscale approach with both continuum hydrocode and MD simulations to explore this



s Multiscale Approach @

Both continuum hydrocode and MD simulations Continuum
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Propagated Down:

Atomistic Properties
Propagated Up:

e  ‘Critical’ local
microstructure

* Global reaction
kinetics

* Improved
strength models

e FEffects of
anisotropy in
strength, EOS

features
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Molecular Dynamics
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; Synthetic Microstructure Generation

2D Discrete Element Method (DEM) simulations used to generate
many microstructures with different porosity configurations

Initial state: spheres placed at random in 250 X 500 nm domain, no ovetlaps

Langevin dynamics with range of contact cohesion values:

Low cohesion High cohesion
®
o o ®
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Final step: shrink particles uniformly to 002 L
generate final configuration g i 1 ® e '.: o

Variations: Particle size distribution, TMD, cohesion, friction, random seed



s Example Synthetic Microstructures ®
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Continuum Hydrocode Simulations—CTH m

“*CTH—3D, large deformation, multi-material shock physics
hydrocode developed at Sandia National Laboratories

dp -
Mass ——=—pVeJl
a7’
dV ,
Momentum  p©=-VP-Ve o+Q(7.c,)
dE _ _ _
Energy P =PV - 6+Q(7.c, )Jovi
Lagrangian and remap solution Density-temperature equilibrium
steps as they appear in CTH for reactive burn models
& t; + At
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UR — T /
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Vi, E;, Py, T, N density-temperature
equilibrium

Problem Start Lagrangian Step Remap Step

McGlaun, J. M., Thompson, S. L., and Elrick, M. G., Int. J. Impact Engng., 10 (1990) 351-360.



o Continuum Hydrocode Simulations—CTH

“2*Reverse ballistic impact calculation

2*Evaluate large number of microstructures to elucidate geometries
that show higher propensity for hot spot formation

Material Models
“* Pores treated as void
Up = lkm/s o HN’S m.atrix:“ . .
DU < Mie-Gruneisen equation of
. state
symmetric | % ’S_.tienberg-.Guinan-Lund
impact E viscoplastic strength model

Up.= 1.25 kmis

lllll

Single-pore ——  T..\

collapse rate
was used to
calibrate SGL
model from MD
simulations




Temperature Distributions for Unique
" Microstructures
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Mean Temperatures Independent of Geometry
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» Hot Spots Related to Temperature Outliers

1.4r
1.2F
1
2
= 0.8 8
° L .
» 06 3 Gaussian
y “Distribution
. Kurtosis = 3
Time =50ps 02
0
: 0 1 2 3 4 5 2 3 4
Approximate Geometry Geometry
shock wave
pOsi tion \IGeometry 1 IGeometry 2 Geometry 3
250, b 1 250 " ' . 250, : ; 1
= i E I = EF .
E i £ £
Q ¢ = [J] z| Q | =
) ) )
e 0 I )isiance (hm) I 500 0 0 l Ii)istlance (rl1m) I 500 0 0 I )isltance (hm) I 500
55k !Ggometry 4 i Y lF(—::ometr)l/ 5
£ . E -
= [=
3% . . |
& | : = | :
DO 1 . . Do‘ 1 . . E
0 Distance (nm) 500 0 Bistance (nm) 500
[ |



s Molecular Dynamics Simulations

“*Use MD simulation to gain more physical insight into highly

clustered microstructure conﬁgurations
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s MD Simulation of Clustered Porosity

250 _ Geometry2
“*Geometry 2: £ :
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Comparison of MD vs CTH with reaction

+*Good qualitative agreement in spatial temperature fields

“»*Shock wave front well resolved in both codes

’:’Temperature magnitude in reacting areas higher in MD
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7 Conclusions

“*Skew and kurtosis of instantaneous temperature distribution provide

information of how many high temperature outliers are present
“*May be good indicator for hot spots

+*Pore clustering seems to be a driver for more high temperature outlier
events

“»*Evolution of temperature distribution with time is a complex function
of chemistry and microstructure features

Future Work

*2* Characterize evolution of statistical metrics over time

“*Better quantitative match of temperature predictions between MD

and CTH



18

Thank You!
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» CTH Conservation Equations

“*Real material behavior comes from an accurate equation-of-state
(EOS) plus a constitutive model with parameters fit to the
appropriate, dynamic regime.

“*spherical part is the equation of state P = f(p,E)

“*deviatoric part is the constitutive model 0 = f(strain, ...)

“*numerical part is the artificial viscous stress Q = f( velocity and ¢y )

dp -
= _pVeV
Mass " P
Momentum pCiZ—It/ ——vP-Vels+Ql,c,)
Energy ,oc;—lf=—PV-I7—:c+Q(I7,cs ]oVV
—S=PI+o0+Q(V,cs)
Stress Tensor Spherical Deviatoric Artificial

Part Part Viscosity



2 VWhat is LAMMPS?

* Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov

*  Open source, highly portable C++, free under GPL license

*  Well documented with many examples, easily extendable for user specific needs

* Variety of boundary conditions, constraints, ensemble sampling methods etc.
* Parallelism through spatial decomposition of simulation domain
*  Short and long ranged interactions allowed/included

* CPU cost is (R{P) apd communication is (N/P)>/3

T
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» Useful, Co-dependent Models

*  Predictions at the mesoscale
now share approximations of
either model

*  Sacrificed some ability to
extrapolate, but have built a
sandbox reality where much
can be learned

* Actively looking for
experimental integration as

validation

Length

I Electronic Atomic Continuum |
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Reactive Potentials in MD (the approximation)
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Pore Collapse Rate (A/Ap*Us/D)
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» |s the MD Model Useful?
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Training Metric

» Collapse rate is used to calibrate

strength models in CTH
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Quantitative post-processing was
done using the OVITO code [10]

¢ LANL Shock Chemistry 2018 — Wood, Kittell, Yarrington and Thompson
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« Temperature histograms
= Efe.

U, = 1.25 km/s

[ 200nm___JgE

Time 17.2ps

1009

Time 16.3ps

[010] o1 [010]

{010] Shock Dir

U,=0.50 kmﬁs

Time 28.8ps

509 75

{010] Shock Dir

[010]




CTH Strain Rate Dependent Model — Steinberg,
* Guinan and Lund (1988)

*  We believe that only a strain rate-dependent model can match MD results for
viscoplastic pore collapse; EPPVM and Johnson-Cook are not up to the task.

* Assume a constant shear modulus
* Neglect work hardening

* Assume linear variation of the Griineisen parameter

Yield Strength: v ={Yr(&p,T) + Yaf ()}
Shear Modulus: G(P,T) = Go

~1
Thermal Activation: ¢ = [ Loypl2Ux(1Y1)*] 4 C2 Yo <7V,
(Implicit Equation) P {Cl zal YP) ] YT} rer
Melting Curve: T, = Tpoexp{2a(l — 1/n)}n2(y0—a—1/3)

(Y=0whenT =>T,)

Grlineisen parameter: Y =7vo/(1+ 1)



» Much Better Mechanical Agreement

Up =
0.75 km/s CTH Hydro CTH SGL MD ReaxFF

1000K

Temperature

300K

Normalized
Plastic Strain

CTH now predicts:
* A much more detailed strain field, viscoplastic deformation
* Correlation between temperature and regions of high strain



