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2 Presentation Outline

•Introduction

•It Synthetic Microstructure Generation

Continuum Hydrocode Simulations (CTH)

Temperature distribution statistics for many microstructures

•:•Molecular Dynamics Simulations (LAMMPS)

High-fidelity study of particular microstructures

.:4 Conclusions & Future Work



Shock Initiation of Explosives at Sandia
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4 Role of Porosity in Shock Initiation

+Some degree of porosity present in almost all energetic materials

Pore collapse can be key mechanism for hot spot formation

Many Single-Pore Collapse Studies
shock direc ion
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•Can we link particular porosity configurations/geometries with
some metric of likelihood for hot spot formation??
+Use Multiscale approach with both continuum hydrocode and MD simulations to explore this



5 Multiscale Approach
Both continuum hydrocode and MD simulations
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6 Microstructure of Pressed Hexanitrostilbene
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7 Synthetic Microstructure Generation

•:*2D Discrete Element Method (DEM) simulations used to generate
many microstructures with different porosity configurations

Initial state: spheres placed at random in 250 X 500 nm domain, no overlaps

Langevin dynamics with range of contact cohesion values:

Low cohesion

o,° 0 oo%,„0 00
06) 00cr o v 0

Final step: shrink particles uniformly to
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Variations: Particle size distribution, TMD, cohesion, friction, random seed



8 Example Synthetic Microstructures
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9 Continuum Hydrocode Simulations CTH

•CTH-3D, large deformation, multi-material shock physics
hydrocode developed at Sandia National Laboratories

Mass 
dp 
—pv•Ÿ

dt

Momentum p c117 = -VP-V • [05 +QW,cs)]
dt

Energy pdE =-PV•17-[45+Q(P,cs)]•VP
dt

Lagrangian and remap solution
steps as they appear in CTH

0
Problem Start La • ran. ian Ste, Remap Step

Density-temperature equilibrium
for reactive burn models

ti

UR

RP

Vir 2 Zr Ti,

AV, AE, AA

ti + At

density-temperature
equilibrium

McGlaun, J. M., Thompson, S. L., and Elrick, M. G., Int. J. Impact Engng., 10 (1990) 351-360.



10 Continuum Hydrocode Simulations CTH

+Reverse ballistic impact calculation

•:•Evaluate large number of microstructures to elucidate geometries
that show higher propensity for hot spot formation

Symmetric
impact

up = lkrr 1 s
1—

Sin
collapse rate
was used to
calibrate SGL
model from MD
simulations

Material Models
+ Pores treated as void
+ HNS matrix:

Mie-Grüneisen equation of
state
Stienberg-Guinan-Lund
viscoplastic strength model

1 25 kmiA

7 1
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Temperature Distributions for Unique
" Microstructures
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12 Mean Temperatures Independent of Geometry
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13 Hot Spots Related to Temperature Outliers

Time = 50 ps

Approximate
shock wave
position

1.4 —

1 .2

1

(T) 0.8

(i) 0.6

0.4

0.2

0
0 1

1
4.***%.4411Geometry 1

250

ro

bistance (nm)

250

0
0

8

7

6

.co 5

O 4
Gaussian

3
—bistribution

2
Kurtosis = 3

1

00 2 3 4 5

eometry 2

stance (nm)

Geometry

500

250

E

a)

0 0

!Geometry 4
•

kistance (nm) 500

250

E
c

00

250

EI
c

500 
0 
0 bistance (nm) 500

!Geometry 5

Geometry

!Geometry 3

kistance (nm) 500



14 Molecular Dynamics Simulations

+Use MD simulation to gain more physical insight into highly
clustered microstructure configurations

Detailed chemistry is incorporated in these MD
ReaxFF Interatomic Potential potentials, hot spot evolution is captured naturally

—Bond order (uncorrected)
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15 M D Simulation of Clustered Porosity

+Geometry 2:
+Large pore cluster between 100-200 nm

+Temperature distribution with high skew and kurtosis
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16 Comparison of MD vs CTH with reaction

+Good qualitative agreement in spatial temperature fields

Shock wave front well resolved in both codes

Temperature magnitude in reacting areas higher in MD
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17 Conclusions

+Skew and kurtosis of instantaneous temperature distribution provide
information of how many high temperature outliers are present
+May be good indicator for hot spots

+ Pore clustering seems to be a driver for more high temperature outlier
events

+Evolution of temperature distribution with time is a complex function
of chemistry and microstructure features

Future Work

'Characterize evolution of statistical metrics over time

Better quantitative match of temperature predictions between MD
and CTH
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19 Time-Evolution of Temperature Distributions



20 CTH Conservation Equations

+Real material behavior comes from an accurate equation-of-state
(EOS) plus a constitutive model with parameters fit to the
appropriate, dynamic regime.

spherical part is the equation of state P = f(p,E)

deviatoric part is the constitutive model a = f(strain, ...)

numerical part is the artificial viscous stress Q = f( velocity and cs )

dp
=—pV • fjMass

dt

Momentum p
dV 

= —vP—v • k+Qw,cs)]
dt
dE

Energy p =—PV •T7 —k-FQW,csl•VT7
dt

S PI ± a ±QW,cs)
Stress Tensor Spherical Deviatoric Artificial

Part Part Viscosity



21 What is LAMMPS?

Large-scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov
Open source, highly portable C++, free under GPL license

Well documented with many examples, easily extendable for user specific needs
• Variety of boundary conditions, constraints, ensemble sampling methods etc.
• Parallelism through spatial decomposition of simulation domain
• Short and long ranged interactions allowed/included
• CPU cost is N. ouu Flowcommunication is (N/P)2/3un 
:,...::.K.,4„1,..1v--•v-iios*,...-kidokii
'44,10:,0•4teie.-=';._ta,
ik i0;0*;No
...,Ikk OVi‘Vkitz.,,,, ,fftftatt.A.
,9",04..,.4o4.74.s_.,.. ;iv- ......„,
kro" ivie .. AAA
ita.„-z-----.A
w1,- ,s

irioN,..211. A lap"'-.... ,=. ,o,
WirA,

Dislocations in Materials

Proteins and Biophysics

Atoms-to-Continuum



22 Useful, Co-dependent Models
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23 Reactive Potentials in MD (the approximation)
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2.4 SGL Strength Model Calibrated from MD
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25 Is the MD Model Useful?

Strong Shock,v
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•••
Weak Shock
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26
LANL Shock Chemistry 2018 — Wood, Kittell, Yarrington and Thompson

Metrics Passed from MD to CTH
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strength models in CTH

0.8

0.6

0.4

0.2

0  

0.5km/s 30nm
0.75km/s 30nm
1.0km/s 30nm
1.2Skm/s 30nm

0.5 1 1.5 2 2.5 3 3.5

Scaled Time (t*Us/D)

Quantitative post-processing was
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CTH Strain Rate Dependent Model — Steinberg,
27 Guinan and Lund (1988)

• We believe that only a strain rate-dependent model can match MD results for
viscoplastic pore collapse; EPPVM and Johnson-Cook are not up to the task.

• Assume a constant shear modulus

• Neglect work hardening

• Assume linear variation of the Griineisen parameter

Yield Strength: Y = tYT(EP,T) + YAf (Ep)}

Shear Modulus: G(P,T) = Go

Thermal Activation:
(Implicit Equation)

E = fl
p ciexp

iUic yTyl
1--

. c2} 1
1- i i, YT < yi,—

kT 1713)
r 

Melting Curve:
(Y = 0 when T Tin)

Tm = Tmoexp{2a(1 — 1/77)}772(Yo-a-1/3)

Grüneisen parameter: Y = Yo/(1 + itt)



28 Much Better Mechanical Agreement
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CTH now predicts:

• A much more detailed strain field, viscoplastic deformation
• Correlation between temperature and regions of high strain

1000K

300K

1

0


