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T-dependence p = (T, P) and S = S(T') via MoSy Friction

Experiments
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A Toy Model in terms of energy barriers (mechanisms to sliding)

120 1,393
- approx. barriers: .
Qo
g 100 T,~418K {1,160 €
5 T =143K 5
2 80 T=bik 928
£ £
n m
= 60 69 3
2 \ - o
— \ ™
E 40 \ - commensurate 464 E
8 * u @ 5
o
5 i 2
a; 20 rotation 232 —_
c __A 3
Q incommensurate "" —— A
0 ""0\«7797 &
10" 100 10 102 108

flake contact area (nm?)

ional Laboratori



120 1
= A approx. barriers:
£ 100 T~418K {1
= B T, = 143K
>~
% 80 | . T,=15K
E
" 60 ]
g \ 0
= \ commensurate
& 40 \
3 * ] ]
ey
% 20 rotation &
8 incommensurate > el A A
0 B Y
107 10° 10 10? 10°

flake contact area (nm?)

393

160

928

696

464

232

(M) .2 "2anjesadw) Jus|eainbs

The probability and failure
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Pn = Aexp ]%7
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The probability to slide and
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The model and data from S(T') = Sp f..(T)
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The model and data from S(T') = Sp f..(T)
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The model and data from S(T') = Sp f..(T)
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The model and data from S(T') = Sp f..(T)
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Atomistic Origins of Temperature-Dependent Shear Strength in 2D
Materials

John F. Curry,*’i‘-l" Adam R. Hinkle, " Tomas F. Babuska,””* Mark A. Wilson,” Michael T. Dugger,Jr
Brandon A. Krick,*® Nicolas Axgibay,*’+"3" and Michael Chandross*'"
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$Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States

ABSTRACT: We present a model that predicts the macroscale MD Simulation of MoS, Shear
temperature-dependent interfacial shear strength of 2D materials like
MoS, based on isti hanisms and getic barriers to sliding.
Atomistic simulations were used to ically d the lamellar
size-dependent rotation and translation energy barriers, that were used
to accurately predict a broad range of experimental data. This framework
provides insight about the origins of characteristic shear strengths of 2D
materials.
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Amorphous and orderd friction in Oxygen

cycle average friction

cycle average friction
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Molecular Dynamics Simulations

top layers
rigid, held spatially fixed

AOor0,gas
thermally equilibrated for 100 ps
thermostat at 250°C; NVE ensemble

surface layer
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MoS, platelets
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Lauritsen et al., Nature Nanotech. 2007
* Start with nanoplatelets

* Defect free platelets are non-stoichiometric
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MoS, platelets

stoichiometric nanoplatelet

* Sandwich 64 nanoplatelets
* Mobile lamella on top & bottom
* Fixed lamella (rigid layer) to control load and speed

* ReaxFF: Vasenkoy, et al., J. Appl. Phys. 2012
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molecular oxygen

atomic oxygen
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*Water does not dissociate (no O2 or H2 formed)
*Molecular O shows little dissociation (mostly in O2)
*Atomic oxygen forms little O2
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