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We propose a strategy to compress and store large volumes of scientific data represented on unstructured grids. Approaches utilizing

tensor decompositions for data compression have already been proposed (e.g. TuckerMPl [2]). Here, data on a structured grid is

stored as a tensor which is then subjected to appropriate decomposition in suitable tensor formats. Such decompositions are based on

generalization of singular value decomposition like procedures to tensors and capture essential features in the data with storage cost

lower by orders of magnitude. However, tensor based data compression is limited by the fact that one can only consider scientific data

represented on structured grids. In case of data on unstructured meshes, we propose to consider data as realizations of a function

that is based on functional view of the tensor thus avoiding such limitations. The key is to efficiently estimate the parameters of

the function whose complexity is small compared to the cardinality of the dataset (otherwise there is no compression). Here, we

introduce the set of functional sparse Tucker tensors and propose a method to construct approximation in this set such that the

resulting compact functional tensor can be rapidly evaluated to recover the original data.
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1 INTRODUCTION

Functional tensors are based on interpretation of high dimensional functions as tensors and their decomposition in

several tensor formats as particular approximations. Consequently, functional tensors have been studied and applied

for sampling based approximation of high dimensional functions in cases where the number of available function

evaluations is small. Several functional tensor formats have been studied for various applications e.g. [8, 11, 14, 15].

These approaches rely on linearity between the parameters of the low-rank format and the output of the function.

Utilizing this multilinear parameterization, they convert the low-rank function approximation to one of low-rank tensor

decomposition for the coefficients of a tensor-product basis.

The novelty of the present paper, in contrast, is aimed at detecting low rank structure in the large volumes of data

in order to obtain a low complexity functional tensor representation for a small loss in accuracy. As opposed to high

dimensional function approximation using tensors in earlier works, high dimensionality does not come from the number

of inputs to the function but from the number of data points required to be processed in order to obtain a functional

tensor form. This functional tensor, stored as a surrogate at a fraction of cost of the original dataset, can be rapidly

evaluated to recover accurate approximations of the data. We note that the compressed functional form can act as a
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preview of the full dataset, which may reside on long-term storage and need not replace the original dataset. In this

paper, we consider the functional sparse Tucker representation of the data.

Several compression methods largely focus on compressing local structure with very little loss in precision. Examples

of such methods include multivariate volume block data reduction by taking advantage of local multiway structure

[13], compression of data in local blocks [9, 17]. Tensor based methods, in contrast, aim at detecting global structure in

the data. It does not process the data in blocks but rather considers the data in its entirety. In this work, in order to take

advantage of tensor based compression, we first interpolate the unstructured data on a structured grid followed by

its Tucker decomposition [20]. Singular vectors with truncated rank for each mode thus obtained are represented as

functions on a suitable basis using least squares with sparsity constraints thus resulting in a functional sparse Tucker

representation of the dataset (see section 2 below).

The manuscript is organized as follows. We introduce and formalize the notion of functional sparse Tucker tensors

in section 2. In order to construct approximations in this set, we review least squares with sparse regularization in

section 3. We then present our construction algorithm in section 4 and illustrate it on simulation datasets in section 5

with a short conclusion in section 6.

2 FUNCTIONAL SPARSE TUCKER TENSORS

The key idea in this work is to represent the dataset as realizations of a multivariate function

nl nd
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where Oik
(k

 ),1 < k< d are basis functions (e.g. polynomials, wavelets...). The number of expansion coefficients

are "k
d=lnk thus manifesting the curse of dimensionality if nk or d or both are large. In such cases, we instead represent

the data as realizations of a Tucker low rank approximation u of u where
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Storage of u in (1) require jikd.1 rk coefficients and Ekd.1 nkrk expansion coefficients of vi7(ikk) (yk),1 < jk < rk,1 S k < d

such that
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In additional, in order to gain advantage from sparsity based regularization, we also constraint the number of non zero

coefficients in (2). In the following, we formalize the notion of functional sparse Tucker tensors.
nk
1,We introduce approximation spaces 84 with orthonormal basis {0(k) ) . such thatj= 

nk
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T ,where v(k) denotes the vector of coefficients of v(k) and where O(k) = (0(ik) ,Akk)) denotes the vector of basis

functions. An approximation space 8„ is then obtained by tensorization of approximation spaces 84 :

sn = sad = v = E vio, ; vi E R ,

where In = xk̀i=1{1 nk} and Oi (y) = (0 11) Or)(Y1,—,Yd) = 0 11)(y1)— Or (yr). An element v =

Ei E Sn can be identified with the algebraic tensor v E Rn1 ... r‘nd such that (v)i = vi. Denoting 0(y) =

(Y1) ® 0(d) (Yr) E I n1 ® ... Rnd , we have the identification 8n = Rnl ... Rnd with

Sn = {v(y) = (0(0,v); v c ... Rn d ,

where (., •) denotes the canonical inner product in Rn1 ... Rn d .

Here, we suppose that the approximation space 8n is sufficiently rich to allow accurate representations of a large

class of functions (e.g. by choosing polynomial spaces with high degree, wavelets with high resolution...). We now

introduce the set of functional sparse tensors.

Let Ti denote the set of (elementary) rank-one tensors in 8n = 81ni ... Sclid, defined by

1 

d

jzi = w(y) = (0C1=1,4,(k) ) (y) = n w(k)(yk); w(k) E 84 ,
k=1

or equivalently by
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with O(k) = (15n ) the vector of basis functions of 84, and where
w(k) = (w nk k)T is the set of coefficients of w(k) in the basis of 8nkk , that means w(k) (y k) = E7k •e) (yk).

Correspondingly, we define m-sparse rank-one subset defined as

jztni -sparse = {w(y) = (0(0,w(1) 0 w(d));w(k) r‘n 
llw(k)llo mk}

v d
=iwith effective dimension vd „, „ nie (here we only count the values of the non-zero coefficients and not". L-Ak 

the integers indicating their locations). However performing least-squares approximation in this set may not be

computationally tractable. We thus introduce a convex relaxation of the €0-"norm" to define the subset T1 of JZ.1 defined

as

9Z1: = {w(y) = (0(y)9w(1) w(d)); lAr(k) E Rnk > llw(k) Ill < Yk} 9

where the set of parameters (w(i), ,w(d), 
) is now searched in a convex subset of I nl x x n d

Finally, we introduce the set of functional Tucker tensors with multilinear Tucker rank r =(r1, . . . , rd)

rl d

fr = Iv = E • • • E ; E
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and the corresponding sparse subset
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In the following, we propose algorithms for the construction of approximations in tensor subsets TT which requires

sparse approximation of functions wik.k (yk). For this purpose, we use least squares with sparse regularization as described

in the next section.

3 LEAST SQUARES WITH SPARSE REGULARIZATION

A sparse function is one that can be represented using few non zero terms when expanded on a suitable basis. In

general, a successful reconstruction of sparse solution vector depends on sufficient sparsity of the coefficient vector

and additional properties (incoherence) depending on the samples and of the chosen basis (see [4, 10]). More precisely,

an approximation ZPi  1 upOi(y) of a function u(y) is considered as sparse on a particular basis {cpi (y)}P 1 if it admits a

good approximation with only a few non zero coefficients. Under certain conditions, a sparse approximation can be

computed accurately using only Q« P samples of u(y) via sparse regularization. Given the random samples z E I Q of

the function u(y) at sample points {0}Q 1' a best m-sparse (or m-term) approximation of u can be ideally obtained byq= 

solving the constrained optimization problem

2min
RP 

llz — 4)1,112 subject to IlvIlo
vE 

(3)

where Ilvllo = #{i {1, ,P} : vi # 0} is the so called to-"norm" of v which gives the number of non zero components

of v and and 0 c RQXP the matrix with components (43)q,i = 6(0). Problem (3) is a combinatorial optimization

problem which is NP hard to solve. Under certain assumptions, problem (3) can be reasonably well approximated by the

following constrained optimization problem which introduces a convex relaxation of the to-"norm":

min Ilz — OvIl22 subject to
vERP

(4)

where ll vlli = EPi  1 Ivi l is the fi -norm of v. Since the €2 and ti -norms are convex, we can equivalently consider the

following convex optimization problem, known as Lasso [19] or basis pursuit [7]:

min Ilz — + (5)
VEI P

where A > 0 corresponds to a Lagrange multiplier whose value is related to S. Problem (5) appears as a regularized

least-squares problem. The el-norm is a sparsity inducing regularization function in the sense that the solution v of (5)

may contain components which are exactly zero. Several optimization algorithms have been proposed for solving (5)

(see [1]). In this paper, we use the Lasso modified least angle regression algorithm (see LARS presented in [12]) and fast

leave-one-out cross validation error estimate [5] for optimal sparse solution (corresponding to regularization parameter

A) which relies on the use of the Sherman-Morrison-Woodbury formula (see [3] for its implementation within Lasso

modified LARS algorithm). In this work, we have used Lasso modified LARS implementation of SPAMS software [18]

for ti-regularization.

4 FUNCTIONAL SPARSE TUCKER USING TUCKERMPI

4.1 Interpolation on structured grid

Representation of the dataset in functional sparse Tucker format defined in section 2 requires estimation of the core

tensor a and univariate functions wCk)(yk). If the dataset is available on a structured grid, it can be stored as a tensor

4
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11. which can then be decomposed in Tucker format

ft = a X1 vv(l) ><2 vv(2)... Xd vv(d),

where xk is mode k product of tt with a factor matrix W(k) E I nkXrk . Here, the compression precision is given by

1111, -1111F c —
11U11F

where 11 • 1IF is the Frobenius norm. Since the dataset considered is unstructured, we propose to interpolate the data on
a structured grid. Let us denote the grid size in mode k,1 < k < d as 4 and, for the sake of simplicity, consider that the
gird points are equispaced. A structured grid of size Il x 12 • • • x Id can thus be obtained. Now, we consider only a small

subset of the original dataset for linear interpolation on this grid and the interpolated data is stored as a tensor which

is then decomposed in Tucker format. We use TuckerMPl [2], a parallel C++IMPI software package for compressing

distributed data, for this purpose. Note that TuckerMPI is a parallel implementation of the sequentially-truncated

HOSVD (ST-HOSVD) [21]. We thus obtain factor matrices W(k), 1 < k < d, the columns of which are realizations of

univariate functions w(ikk)(yk ), 1 < j< rk.

4.2 Sparse approximation of singular vectors

We now wish to obtain a functional representation wCk)(yk), 1 < jk < rk, of the singular vectors W(k, k) such that W.(1̀);k
kare evaluations of w

(
.k)(y(k) at grid locations {yki }ikik=1 along mode k. For this purpose, we use least squares with sparse

k

regularization in section 3 to obtain coefficients on suitable basis functions. It is well known that singular vectors are

more oscillatory (see for e.g. Figure 3(a)) for higher rank as they capture high frequency phenomenon in the dataset.

Thus, choice of basis functions for representation of w(.k)(yk) corresponding to small jk may not be appropriate for the
lic

ones with higher jk. Therefore, in this work, we propose to construct approximation in two spaces Pp, where Pp is

the space of Legendre polynomials of degree p and Ws,p, where Ws,p is the space of multi-resolution wavelets with

resolution s and degree p. We can then choose the approximation that gives smaller approximation error. We present

the overall compression scheme in Algorithm 1 below.

Algorithm 1 Compression of unstructured data in functional sparse Tucker format

Input: Original dataset, interpolation grid 4,1 < k< d, compression precision c
Output: Function sparse Tucker tensor core a and coefficients of WV° (yk),1 < k < d,1 < jk < rk.

i: Interpolate the data on structured grid of size Il x • • • x /d

2: Use TuckerMPl to get core tensor a and factor matrices W(k) for given compression precision
3: for k = 1, . . . ,d do
4: for jk = 1, . . . , rk do

5: ApproximatewCk) USingComponentsof W(19inPp and Ws,p and estimate error (See section 3)
.11c Jk

6: Store coefficients of w
(
.
k) 

corresponding to smaller approximation error

7: end for
8: end for

5
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Table 1. Specification of interpolation grid size and Tucker ranks obtained for different precision using TuckerMPl for two test cases

Dataset Interpolation grid size Precision (c) Size of core tensor

SP3D 500 x 500 x 300 
1.0 x 10-2
1.0 x 10-4

SP4D 500 x 500 x 500 x 300 1.0 x 10-2

25 x 24 x 8
57 x 50 x 17

30 x 38 x 5 x 11

5 APPLICATION EXAMPLE

5.1 Specification of Datasets

We apply the method on a data set pertaining to a direct numerical simulation (DNS) of turbulent combustion. A

"statistically planae (SP) premixed flame [16] stabilized in homegeneous isotropic turbulence is simulated using the

massively parallel DNS code S3D [6]. A premixed mixture of methane and air establish a flame that remains statistically

planar and stationary in an oncoming turbulent flow. The combustion chemistry is described using a chemical mechanism

containing six chemical species. Accordingly, at each point in the spatial grid and time the solution vector contains

eleven dependent variables describing the full thermo-chemical state of the flame. The data set is mapped onto a

3-dimensional structured grid comprising 500 grid points in each satial dimension, and a total of 400 time snapshots are

considered. For the illustration of the method, to follow, we consider two variants of this fundamentally 4-dimensional

data set: a 3-D data set comprising only two spatial dimensions and time, and the full 4-D data set comprising all three

spatial dmensions and time.

5.2 Illustrations

We apply our compression strategy on the dataset of the previous section for two cases. In the first case, henceforth

referred to as SP3D, we consider that the data belongs to a three dimensional space, consisting of two spatial axis and

one time axis. The total number of data points in this set is 7.5 x 107 with total storage cost of 0.6 gigabytes for double

precision. The second case considers a 4 order tensor, SP4D, which also considers the third spatial axis, in addition

to the ones in SP3D. The total storage cost of data in this case is 300 gigabytes with 3.75 x 1010 data points. In the

following, we illustrate results of SP3D case, and mention that a similar illustrations can be obtained for SP4D.

In case of SP3D, we interpolate the data on a structured grid of size 500 x 500 x 300 using only 10% of the data

in the original set and decompose the resulting tensor in Tucker format using TuckerMPl. Figure 1 shows the decay

in the absolute value of the components of the core tensor a versus rank (multilinear Tucker rank on horizontal

axis is converted to canonical rank) of SP3D for Tucker decomposition precision of 1.0 x 10-3. We clearly see that

there is a fast decay in the singular values thus indicating strong scope for compressibility of this dataset. Table 1

summarizes the interpolation parameters and multilinear Tucker ranks i.e. size of the core tensor thus obtained for

different decomposition precisions for the two datasets.

We now consider functional approximations of singular vectors along the first mode. Figure 2(a) shows first singular

vector W
(1) 

and its corresponding functional approximations in P20 and P40. For better illustration, the corresponding

approximation errors are plotted in Figure 2(b). We find that a sufficiently rich approximation space is necessary for

accurate representation of singular vectors as point wise error for p = 40 is much smaller than with p = 20.

Figure 3(a) and (b) show similar plots for the last singular vector in the first mode i.e. W. in approximation spaces

P40 and w3,5. We clearly see that, in this case, a multi-resolution wavelet basis is essential to get an accurate functional

6



Functional Sparse Tucker Tensor for Scientific Data Compression KDD, Aug 4, 2019, Anchorage, Alaska

106

cu 104

10
2

g 1 0°

010• -2

4",C 4
10-

o-6 
0.5 1 1.5

Rank
2.5

x104

Fig. 1. Decay of singular values i.e. absolute value of components of core tensor a v/s rank of SP3D with TuckerMPl precision of

1.0 x 10-3. The rank on horizontal axis is converted to canonical rank by sorting the singular values in descending order.
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Fig. 2. (a) Approximation of 4)(y1) using least squares with ti regularization from data points as components of 14/.(11) in the

approximation space of Legendre polynomials of degree p = 20 and p = 40. (b) Point wise approximation error v/s grid index of the

two approximations in (a)

Table 2. Compression results using functional sparse Tucker tensor

Dataset Precision Compression ratio Storage cost

SP3D 
1.01 x 10-2 3879 155 KB

1.9 x 10-3 936 640KB

SP4D 1.1 x 10-2 4.45 x 105 673 KB

representation, although point wise approximation error is high as compared to the first singular vector. Table 2 shows

compression error, compression ratio and storage cost for functional sparse Tucker tensor for both test cases.
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Fig. 3. Approximation of wg)(yi) using least squares with ti regularization from data points as components of 147.(517 in the

approximation space of Legendre polynomials of degree p = 20 and wavelets with resolution level 5 and degree 3. (b) Point wise

approximation error v/s grid index of the two approximations in (a)

Finally, Figure 4 shows visualization of 2D slice of the original dataset obtained from reconstruction of data from

TuckerMPl and functional Tucker tensor.
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Fig. 4. Visualization of a 2D slice of SP4D dataset using reconstruction of tensor obtained from TuckerMPl and functional sparse

Tucker. tensor.

6 CONCLUSION

We presented a novel technique to compress large volume of data using functional sparse Tucker decomposition. The

key idea is to find a sufficiently accurate representation of data in the set of functional Tucker tensors with complexity

smaller by orders of magnitude as compared to the size of dataset. In order to achieve this objective, we defined the set
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of sparse functional Tucker tensors and used existing parallel implementation of Tucker decomposition to construct

approximation in this set. The singular vectors are approximated as functions represented on suitable basis using least

squares with sparse regularization. The entire compression scheme was tested on datasets obtained from high fidelity

combustion modeling simulations. For small loss of accuracy, the proposed strategy results in compression ratio of up

to 936 and 4.45 x 105 for a third order and fourth order dataset respectively.
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