This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 5665C

Title:

Evolving a Standard C++ Linear Algebra Library from the BLAS
Abstract:

Many different applications depend on linear algebra. This includes
machine learning, data mining, web search, statistics, computer
graphics, medical imaging, geolocation and mapping, and physics-based
simulations. Good implementations of seemingly trivial linear algebra
algorithms can perform asymptotically better than bad ones, and can
get much more accurate results. This is why authors (not just us!)
have proposed adding linear algebra to the C++ Standard Library.
Linear algebra builds on well over 40 years of well-accepted
libraries, on which science and engineering applications depend. In
fact, there is an actual multiple-language standard for a set of
fundamental operations, called the Basic Linear Algebra Subprograms
(BLAS) . The BLAS Standard defines a small set of hooks that vendors
or experts in computer architecture can optimize. Application
developers or linear algebra algorithm experts can then build on these
hooks to get good performance for a variety of algorithms.

The only thing missing from the BLAS is a modern C++ interface.
Nevertheless, its wide availability and many highly optimized
implementations make it a good starting point for developing a
standard C++ library. In this talk, we will walk through the design
iterations of a typical C++ linear algebra library that builds on the
BLAS. This process will highlight challenges that BLAS users
currently face. It will also show features C++ developers need that
the BLAS and its derivatives (like LAPACK) do not provide. We will
both argue for inclusion of linear algebra in the C++ Standard
Library, and give our views about how simple that library could be and
still be useful.

Talk outline:

I. What do we mean by "linear algebra"?

A. Operations on matrices & vectors

B. This includes both
1. Products and other "computer science things"

2. Factorizations & other "numerical analysis things"
II. Why put linear algebra into C++ standard library?

A. Linear algebra widely used, & growing interest

B. Codify decades of practice in C++ & other languages

C. Like sort: Obvious algorithms asymptotically slower
than the right algorithms

D. Many opportunities for vendors to add value

IIT. What is the BLAS and why use it?

A. BLAS is a standard with a long history (if time allows,
summarize BLAS development history, and tie to development of
cache-optimal algorithms)

B. BLAS has high-performance implementations

C. Writing a high-performance implementation is nontrivial

D. Most public C++ linear algebra libraries rely on BLAS for
performance anyway

IV. Design iterations of a BLAS-based C++ linear algebra library

A. Motivating use case: Portable high-performance C++ application
that needs dense matrix-matrix products
1. Na\"ive triply nested loop is slow
2. Want minimal external library dependencies
3. Iterative development process -- group challenges in the

order they are likely to arise

B. Start: Use the BLAS from C++
1. Challenges

a. Find optimized BLAS implementation
b. Link to the library
c. Call BLAS (Fortran or C ABI) from C++
2. Success criteria
a. Successfully link to BLAS
b. Extern "C" declarations of BLAS functions
c. Portably correct with respect to BLAS ABI
C. Next: Type safety and genericity
1. Challenges
a. Type safety
i. Correct pointer types
ii. Complex number ABI issues
iii. Passing scalar arguments by pointer
b. Genericity: function names and interfaces
i. BLAS function names encode type
ii. Want functions overloaded for different types
iii. Real vs. complex interface differences
c. Genericity: BLAS only supports 4 types, but
C++ developers want more (e.g., short floats)
i. Much of BLAS only uses plus and times, so those
functions should work for integers (etc.) too
ii. Dot products and norms: Modest mathematical
ambiguity for more "interesting" types

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



d. What if BLAS library not available?
2. Success criteria
a. Generic and type-safe C++ library, using raw pointers
b. Fall-back C++ implementation
i. For unsupported types, or
ii. if BLAS library not available, or
iii. to test correctness of Fortran ABI assumptions
or of BLAS itself.
D. Next: C++ data structures & encapsulation
1. Challenges
a. Need C++ data structures for matrices & vectors
b. BLAS functions take many, unencapsulated arguments
(C++ Core Guidelines I.23, I.24)
2. Solutions
a. Take matrices and vectors as mdspan (P0009)
b. scaled view to encapsulate scaling factors
c. transpose view to encapsulate transpose arguments
d. mdspan accessor to encapsulate different data layouts
E. Next: Composition of parallelism
1. Challenges
a. Conflicts between BLAS implementation's internal
parallelism and user's parallelism, even if user does not
call BLAS from parallel code (e.g., thread pools that
fight over resources)
b. User wants to specify execution policy for linear algebra
operations, just like for C++ standard algorithms
c. Hierarchical parallelism (calling BLAS from parallel code)
2. Solutions
a. Constraint on BLAS implementation and user's parallel
programming model
b. Imitate C++ >= 17 algorithms by taking optional execution
policy argument (also a hook for hierarchical parallelism)
F. Next: Optimize for tiny matrices and vectors
1. What does "tiny" mean?
a. Anything from "cheaper to pass by value" to "fits in cache"
b. Consider compile-time sizes
2. Important use case for many fields
3. Challenge: BLAS interface not designed for tiny data structures
a. Can't inline through extern "C" interface
b. Mandatory error checking
c. Dimensions and other arguments all run time
4. Solutions
a. mdspan-based interface
i. Specialize for compile-time dimensions
ii. Specialize for transpose, etc. arguments
iii. Relax error handling requirements
b. Containers vs. views
i. mdspan stores a pointer
ii. overhead, esp. for short types
iii. mdarray proposal
c. "Batch" interface
i. Do many small operations in one call
ii. Expose more levels of parallelism
iii. mdspan helpful
iv. Different hardware vendors have implementations
V. Taking stock: What do we have, what's missing, and why
A. We have
1. Modern C++ interface to the BLAS
2. Hooks for hierarchical parallelism
3. Hooks to optimize for tiny matrices
B. We also have a suggestion for a standard C++ library
that builds on long industry practice
C. We don't yet have
1. LAPACK or related functionality
a. LAPACK is an implementation, not a standard
b. Need BLAS-like components for an LAPACK-like library anyway
c. Standardization can proceed in phases
d. True genericity of complicated numerical algorithms over
many number types is hard
e. Even though LAPACK has "generic" design
2. Freedom from external BLAS library
a. Optimizations are nontrivial, but well understood for
common computer architectures
b. Opens door to algorithmic optimizations that may affect
rounding error (e.g., Strassen)
3. Overloaded arithmetic operators
a. Developers in some fields (e.g., graphics) expect them
b. C++ libraries can and do implement operators using BLAS or
any "named function" interface
c. What should operator* mean for matrices?
(C++ Core Guidelines C.167)



d. Invasive to unrelated code (ADL)
Optimizations that fuse multiple operations into one
a. Why fuse operations?
i. Maximize data reuse
ii. Amortize parallel launch overhead
b. C++ technique: expression templates
i. Over 20 years of C++ prior art
ii. Often used by C++ linear algebra libraries
c. Why not expression templates?
i. "auto" and dangling references problem
ii. Fusing operations not always a win
iii. Encourages overloading arithmetic operators
- Invasive to unrelated code (ADL)
- What should operator* mean for matrices?
iv. Poor precedent in Standard Library
- valarray permits but does not mandate them
(proposals to add them were rejected)
v. Existing features could cover many use cases
- mdspan accessors could be used for expression
templates, analogously to David Vandevoorde's
valarray proposal, but without any more risk of
dangling references than mdspan itself admits
- Ranges (as they evolve to support e.g., execution
policies)
d. Tension with orthogonality / single responsibility
i. C++ Core Guidelines F.2
ii. BLAS matrix multiply (C = beta*C + alpha*A*B)
combines addition and multiplication
iii. Context: this is exactly what LAPACK's LU
factorization needs for trailing matrix update
iv. BLAS' unexpected beta=0 overwrite rules result in
part from functions having multiple responsibilities;
our design permits harmless aliasing to avoid these

Extra credit challenges

1.
2.

3.

Optimizations for types not supported by BLAS
Does mixing precisions, real and complex, etc.

do the right thing?

Some kinds of number types (e.g., fixed point)
may call for a different linear algebra interface



