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Entangled-Atom Interferometry

Recent progress in generating entanglement between neutral atoms provides
opportunities to advance quantum sensing technology. In particular, entanglement
can enhance the performance of accelerometers and gravimeters based on light-
pulse atom interferometry. We study the effects of error sources that may limit the
sensitivity of such devices, including errors in the preparation of the initial entangled
state, spread of the initial atomic wave packet, and imperfections in the laser pulses.
Based on the performed analysis, entanglement-enhanced atom interferometry
appears to be feasible with existing experimental capabilities.

Few-Atom Entanglement vs. Spin
Squeezing

Spin squeezing:

• Working technology:

N/Atom clocks (10 dB beyond SQL)
O. Hosten et al., Nature 529, 505 (2016)

N(Magnetometers (5 dB beyond SQL)
Sewell et al. (2012); Muessel et al. (2014)

• Advantage: Large number of atoms (up to 106)

• Drawback. Low fidelity of entanglement (0.1%
of all atoms are entangled)

Few-atom Entanglement:

• Advantage: High fidelity of entanglement (81% published and close to 89% in our
current experiment at Sandia)

• Drawback. Small number of atoms (currently only 2)

• Bonus: It may be easier to discover the fundamental limitations on the performance
of an AI operated with entangled atoms.
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Coherent spin state Entangled state
Adapted from O. Hosten et al., Nature 529, 505 (2016)

Entangling Two Cs Atoms
Experiment at Sandia

133Cs atoms in optical tweezers
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Light-Pulse Atom Interferometry
Two counter-propagating laser
beams drive Raman transitions

g)
Large momentum kick K

Small transition energy Weg

V

Weg

fi

Gravimeter

Single atom trajectory

upper tg

Upper path acquires more phase

Olower Oupper K • gT2

k1 k2 2k1
c -0 1 - W 2

71/2

mp)

Accelerometer

TT

gip)
Two paths acquire

7F 2

K • a T2

Alkali Atoms Large K amplifies signal 1KIrr: 107 rad./m
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Characterizing Error Sources
Ideal Accelerometer
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Frequency proportional to N

(II) = COS ON

ON = NK • aT2

Uncertainty at Heisenberg limit

AO = All a (H) =1/N

Imperfect Initial State Preparation
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The noise reduces the visibility
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Laser Intensity Fluctuations
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Number of Entangled Atoms

We average over random changes in
pulse area with a standard deviation
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Dominant Error and Mitigation Strategy
Initial Momentum Spread Can Easily
Dominate All Other Error Sources
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Atoms begin in optical tweezers
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(n) = [exp(hwvib/kBT) - 1]-1

The initial momentum spread leads
to a detuning error in the pulses
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Error term is proportional to N
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Error is significant at N*
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We Can Mitigate Momentum Spreaa
Error by Lowering the Trap Frequency

N* ti 4755.86 1{1-1z/vt„p

A trap frequency of 10 kHz is feasible

N* rr -d_d 476 or 27 dB beyond SQL
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