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Recent progress in generating entanglement between neutral atoms provides beams drive Raman transitions Single atom trajectory
opportunities to advance quantum sensing technology. In particular, entanglement ' : ¢upper ; l !
can enhance the performance of accelerometers and gravimeters based on light- L e : i
pulse atom interferometry. We study the effects of error sources that may limit the E ““““““ ¢lower: :
sensitivity of such devices, including errors in the preparation of the initial entangled Ef \i i
state, spread of the initial atomic wave packet, and imperfections in the laser pulses. ! AR
Based on the performed analysis, entanglement-enhanced atom interferometry L >& >

appears to be feasible with existing experimental capabilities.
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