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Abstract
As cyber researchers increasingly rely on virtualized
testbeds, there is a need to use formal statistical methods to
generate ensembles of cyber experimental runs or emula-
tions. Principled statistical approaches can provide rigor in
analyzing results and support inferences made from such re-
sults, for example about the importance of certain parameters
or statements about the range or percentiles of likely re-
sponses. In this paper, we outline terminology used in the
Design of Experiments (DoE) community, provide back-
ground about DoE methods used for computational simula-
tions such as engineering codes, demonstrate the use of for-
mal DoE methods on a cyber experimental testbed, and de-
velop recommendations for future work in DoE within the
cyber experimentation community

1. Introduction
There are many issues associated with defining realizations
of cyber experiments on testbeds. Several frameworks have
been developed to make the experimental design construction
more consistent and reproducible. For example, DEW (Dis-
tributed Experiment Workflows) [10] provides a generic de-
scriptive language that encodes the desired behavior of an ex-
periment. DEW provides a way to describe a scenario and
associated topologic constraints, with the focus of developing
more automated testing scripts, automated generation of sce-
narios and topologies, and sharing and reuse. As another ex-
ample, Maricq et al.[9] examine platform variations in emu-
lation-based experiments using carefully structured experi-
ments and statistical analysis. They present many good
practices, such as the need to randomize experimental runs,
eliminate consistent outliers, and being cognizant of shared
resources where other workloads may significantly affect the
emulation results.

In this paper, we assume the reader has access to a cyber
testbed and wants to generate multiple scenarios or realiza-
tions for the purposes of sensitivity analysis, uncertainty
quantification, or optimization. There is a rich history of per-
forming such ensemble studies in the computational science
community. [11,13] For example, researchers developing
and running structural dynamics , shock physics, or heat trans-
fer simulations typically run ensemble simulations to under-
stand safety critical scenarios. Accurately assessing the

sensitivity of the results with respect to important parameters
and assessing uncertainty in the responses (e.g. what is the
probability that the displacement at a certain location is
greater than X?) are critical for assessing the reliability of
systems in the automotive and aerospace industry, for exam-
ple. [1,2,12].

We draw on the history of experimentation on computational
simulations in this paper with the goal of providing guidance
on how one specifies the parameters to be investigated (e.g.
with discrete levels or settings, as uncertain parameters with
continuous or discrete distributions, etc.), how one generates
the sample set, and how one analyzes the results.

Currently the state of the art is to either do a "here calcula-
tion on a cyber testbed with an experiment that is run once or
just a few times, or to perform a "grid" study where the pa-
rameter settings are discretized and each combination of pa-
rameter settings is run. This latter can be computationally
expensive due to the curse of dimensionality and thus meth-
ods requiring one to run only a subset of the complete enu-
meration of the parameter space are necessary. We discuss
grid studies (e.g. full factorial designs) but also suggest other
options in instances where the number of runs is much less
than the number of parameter combinations that is possible.
This reduces computational cost at the expense of under-
standing interaction effects between variables. Finally, some
cyber experiments are run multiple times at the same settings
(sometimes called replications or iterations) to understand the
stochastic behavior of the system. The optimal number of
replications is also a topic of interest and this is a topic little
discussed in the cyber experimentation community although
there is some recent work demonstrating number of samples
required to achieve a particular confidence interval for the
mean or median of a set of runs [9].

We feel that terminology is a very important and thus Section
2 provides detailed definitions of terms related to Design of
Experiments. Section 3 provides an example demonstrating
DoE on a cyber problem, and Section 4 provides recommen-
dations.

2. Definitions
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We provide definitions of terms in Sections 2.1-2.10. Sec-
tions 2.11 and 2.12 address topics which are often a source of
confusion and for which there is active debate.

2.1. Experimental Design

This is an overloaded term. It can be used to refer to how one
selects input parameter settings for one experiment (e.g.
which virtual environment to use, how many virtual ma-
chines, what protocols to run, etc.) The one experiment may
involve multiple replications where the experiment is run
multiple times at the same settings of the governing parame-
ters.

However, Experimental Design can also be used to refer to
the broader problem of selecting a set or suite of experimental
parameter settings at which one will run the cyber experi-
mental model (e.g. various choices of number of cores per
machine, protocols and environment settings, packet size of
traffic, bandwidth of links, etc.)

2.2 Design of Experiments

To make the distinction between Experimental Design and
Design of Experiments clear, we refer to Experimental De-
sign as the process of selecting parameter choices for one run
(with or without replicates) and the process of selecting an
ensemble of runs as Design of Experiments since the refer-
ence to "Experiments" in "Design of Experiments" makes
clear one is generating an ensemble.

The goal of DoE is to generate an "ensemble of runs, where
each run itself may involve replicate runs or not. The param-
eter values for each run should be carefully chosen to extract
as much trend data from a parameter space as possible using
a limited number of sample points. Additionally, the ensem-
ble can be used to perform sensitivity analysis and uncer-
tainty quantification studies. For example, one might want to
know which variables contribute the most to packet response
time or determine the distribution of quantities of interest
such as network latency, bandwidth, and memory.

23 Optimal Experimental Design

The selection of input parameters for design of experiments
may be done in many ways. There are several criteria one
can choose to optimize when selecting a design. For exam-
ple, Monte Carlo sampling over the parameter domain gener-
ally tries to select points with good "space filline properties.
There are several "alphabet-optimal" designs such as A-opti-
mal, B-optimal, D-optimal, G-optimal, and I-optimal. These
designs all involve optimizing some property of the run ma-
trix.

Let us denote the run matrix, X, to be of size nxp, where the
n rows represent n runs, each with p parameter values. The
information matrix is denoted by the inverse of the variance
matrix, or [XTX] -1. An A-optimal design minimizes the

trace of the inverse of the information matrix which results in
minimizing the average variance of the estimates of regres-
sion coefficients built on the dataset X. A D-optimal design
minimizes the determinant of the information matrix which
results in maximizing the information content of the parame-
ter values (this is also has the effect of good "space filling"
properties). A G-optimal design minimizes the maximum
variance of the predicted values from a regression fit built on
the dataset X, etc. [18]

The above designs are fixed designs that seek to optimize a
particular property. There are also adaptive designs in which
an initial experiment is run and then an optimization proce-
dure identifies the "next best" experiment to run to optimize
some objective. Typically, the objective involves improving
the parameters of the model and "gaining the most infor-
matioe possible. For example, Bayesian optimal experi-
mental design has become popular, with the goal of determin-
ing experiments which most inform the posterior distribution
inferred on model parameter values (need citation).

2.4 Uncertainty Quantification

Uncertainty Quantification (UQ) is the process of character-
izing all uncertainties that could affect the results of the cyber
experimental runs. Once the uncertainties are identified and
characterized as "input uncertainties", they are propagated
(e.g. mapped) through the experiment to obtain uncertainties
on the results ("output uncertainties").

UQ is a closely related activity to V&V and essential for ver-
ifying and validating computational models. The goal of UQ
is to propagate input distribution uncertainty through the
model to generate distributions on the model responses. This
can then be used to understand the mean and variance of the
output, calculate the probability that the response is less than
or greater than a particular threshold value, etc. UQ, along
with V&V, enables modelers and analysts to make statements
about the degree of confidence they have in their simulation
or emulation-based predictions. Uncertainty quantification
has been a fundamental capability supporting nuclear reactor
safety studies, performance assessment of repositories for the
disposal of nuclear waste, computational fluid dynamics for
aircraft design, and climate model predictions [3,7,11,12].
We anticipate more widespread use of UQ in the cyber emu-
lation community to address questions about the performance
and confidence in mitigation strategies for network attacks,
for example. However, emulated cyber environments are dif-
ferent from physics simulation models used in many risk as-
sessments of engineered systems. We need to understand
how typical UQ methods work in the presence of stochastic
network behavior, and how to use UQ methods to identify
"edge case behavior where software, hardware, network to-
pology, and vulnerabilities interact in unforeseen ways.



2.5 Sensitivity analysis

Sensitivity analysis (SA) is the process of identifying the
most significant factors or variables affecting the uncertainty
of the Emulytics model predictions [16,17]. This can help
identify where to most effectively place cyber threat mitiga-
tions or invest in resources. Sensitivity analysis can be used
to identify model inputs in which a reduction of uncertainty
would most reduce the uncertainty of the model output, or to
identify model inputs that could be fixed to simplify the cal-
culation, or to identify general trends between inputs and out-
puts. Sensitivity analysis (SA) can be performed using local
or global methods.

2.6 Verification and Validation (V&V). Over the past few
decades, the computational simulation community has devel-
oped a strong emphasis on Verification and Validation activ-
ities to build credibility in scientific computing. A study by
the National Research Council at the National Academies is-
sued a report outlining the mathematical and statistical foun-
dations of V&V and UQ as primary activities supporting the
reliability of computational models [12]. A number of pro-
fessional societies have developed guidelines and standards
for V&V activities [1,2]. We take as definitions those out-
lined in [13]:

• Verification is the process of assessing software correctness
and numerical accuracy of the solution to a given mathemat-
ical model.

• Validation is the process of assessing the physical accuracy
of a mathematical model based on comparisons between
computational results and experimental data.

Verification provides evidence that the model and the equa-
tions are correctly solved. In computational simulations, it
deals with the adequacy of the numerical algorithms to pro-
vide accurate numerical solutions to the discretized partial
differential equations. In cyber experimentation, it can refer
to how accurately the virtualized software and hardware com-
ponents represent their physical counterparts. Validation ad-
dresses a different question: the degree to which a model is
an accurate representation of the real world from the perspec-
tive of the intended uses of the model. Validation provides
evidence that the cyber experiment is appropriate for the
problem of interest. Validation typically involves measuring
agreement between the experimental outcomes and "gold
standarr outcomes from appropriately designed validation
experiments running on actual networks or physical testbeds
with no emulation. The extent to which validation can be
performed on cyber experiment models and how to do it is an
open research question [8].

2.7 Parameter Study

Typically, a parameter study means the same thing as an ex-
perimental design: it specifies a number of runs which

involve varying the allowable levels of the parameters in a
structured way.

2.8 Factorial Design

A factorial design is an experimental design that samples the
full combination of all parameters. Thus, if there were 3 pa-
rameters and each had 5 allowable values or levels, a full fac-
torial design would involve 5*5*5 = 125 runs. A fractional
factorial design only involves a subset of the full factorial.
The subset is typically chosen to best estimate the main ef-
fects of the parameter values .[6] There is a rich statistical
literature based on orthogonal arrays that involves determin-
ing fractional designs. The approaches typically involve sub-
stantial computation, rely on libraries of pre-generated or-
thogonal arrays, and are mainly valid for combinations of
variables only with two or three levels.

2.9 Replicates

A replicate refers to running the same set of experimental set-
tings multiple times to see how the response varies within that
setting. A replicate can also be called an iterate. The idea of
replicates comes from the early experimental design litera-
ture. A common example is that of crop yields, where the
parameter of interesting might be the application of fertilizer.
A "replicate' would be one of several plots to which fertilizer
was applied or one of several plots to which it was not ap-
plied. Replication is needed when there can be significant
variation within a treatment or combination of parameter set-
tings.

2.10 Surrogates

Experimental design and UQ can both require huge numbers
of model evaluations to generate accurate statistics or to per-
form sensitivity analysis. For this reason, the computational
science community has embraced the notion of "surrogate
models", also called emulators, meta-models, or response
surface approximations. Surrogate models are used in com-
putational models for physics and engineering applications to
replace the "full physics code runs" which involve the solu-
tion of partial differential equations over very large (e.g. >
1M elements) meshes. In the past two decades, surrogate
modeling for computational science problems has become an
active research field. Some of the most common surrogate
models involve regression [20], Gaussian processes [14], and
polynomial chaos expansions [5,21].

Cyber testbeds themselves may be considered surrogates for
real-world environments. However, it is also possible to
think of surrogates or lower-fidelity models for cyber virtu-
alized experiments or emulations. For example, such surro-
gates could be regression models or other statistical data-fit
models such as Gaussian processes. But surrogates for cyber
experiments might also involve discrete event simulators
such as the NS3 network traffic simulator. Finally, surrogates



for cyber experiments might involve analytic formulas. One
use of surrogates for cyber experiments is for "multi-fidelity"
UQ. In this approach to UQ, a low-fidelity model is run thou-
sands of times, where a high-fidelity model may be run a few
times. The results are combined to produce a high-fidelity
estimate which has the benefit of low variance from the large
number of low-fidelity runs and improved accuracy from the
high-fidelity runs which reduce bias in the estimate [4].

2.11 UQ vs. Experimental Design

Note that there can be a subtle difference in how one treats
the results of an experimental design study and a UQ study.
Typically, uncertainty quantification requires the user to
specify probability distributions on the input parameters (e.g.
normal, Weibull, exponential, etc.). Then, samples are taken
according to the probability distributions and the model is run
at those settings to produce a distribution on results. Thus,
uncertainty quantification focuses on mapping input distribu-
tions to output distributions: the goal is understanding the
probability distribution of the output and associated statistics
such as mean, variance, and percentiles of the output. His-
torically, experimental design methods do not require distri-
butions. They are more focused on the influence of the input
settings (often taken to be binary or discrete levels). Thus,
the goal of experimental design is to say something like "the
application of fertilizer results in a mean crop yield that is
statistically significantly higher than without the fertilizer."
Parameter studies, factorial studies, and parameter sweeps
over levels of an input parameter typically are not focused on
"distribution of inputs to distribution of outputs mappine but
instead on "what is the difference in response under various
experimental settingsr or "what is the trend in the response
as we increase the value of an input parameter?"

A confusing aspect of the distinction outlined above is that
Monte Carlo sampling may be used for both UQ and experi-
mental design. That is, often Monte Carlo methods are used
to generate realizations of input parameters for UQ. How-
ever, Monte Carlo methods may be used to generate a small
number of samples from a high dimensional space when a full
factorial design or complete enumeration is too expensive. In
the latter case, one does not necessarily impose a distribution
structure on the outputs. It is acceptable to use Monte Carlo
methods for both UQ and experimental design studies, but the
analyst should carefully state what assumptions are being
made on the input distributions or levels of parameter values.

2.12 DoE for physical vs. computational experiments

Statisticians classify DoE approaches into two different ar-
eas: classical Design of Experiment methods and the more
modern design and analysis of computer experiments
(DACE) methods. Classical DoE techniques arose from tech-
nical disciplines that assumed some randomness and nonre-
peatability in field experiments (e.g., agricultural yield,

experimental chemistry). DoE approaches such as central
composite design, Box-Behnken design, and structured fac-
torial designs have approaches to generate and handle repli-
cate runs. These designs also put sample points at the ex-
tremes of the parameter space, since such designs offer more
reliable trend extraction in the presence of nonrepeatability.

DACE methods are distinguished from DoE methods in that
the nonrepeatability component is omitted for computer sim-
ulations which are deterministic (e.g. one set of input param-
eters always results in the same output. This is usually the
case for the partial differential equations models used to solve
physical problems). Thus, for DACE experiments, there are
no replicates. In these cases, space-filling designs and Latin
hypercube sampling are more commonly employed to accu-
rately extract trend information. Quasi-Monte Carlo sam-
pling techniques which are constructed to fill the unit hyper-
cube with good uniformity of coverage are also used for
DACE. Space filling designs are also employed when con-
structing surrogate models, and much of the early DACE
work centered around sampling to construct Gaussian pro-
cess models [15,18,20]. Note that cyber experimentation in-
volves aspects of both DoE (e.g. possible randomness and
nonrepeatability from stochastic network traffic, delays, tim-
ings, etc.) and DACE (large numbers of simulation parame-
ters, need for good space filling designs).

3. Demonstration
In this section, we provide a simple example of how one
might use DoE within a cyber experimentation workflow to
generate and analyze results. For this demonstration, we uti-
lize two software frameworks developed at Sandia National
Laboratories. Dakota is a software framework for uncertainty
quantification, sensitivity analysis (SA), optimization, etc. of
computational simulations (https://dakota.sandia.gov). It has
an extensive set of UQ/SA algorithms in a framework that
allows one to generate automated parameter studies on a sim-
ulation or emulation code easily.

Firewheel is a toolset developed by Sandia National Labora-
tories to launch and manage virtual machines (VMs) to emu-
late networks. It includes a scriptable interface with Python
APIs to support the experimentation lifecycle such as speci-
fying topologies and parameters, launching applications, cap-
turing data and running services.

A picture of the workflow coupling Dakota to Firewheel is
shown in Figure 1. We used the workflow to drive an exper-
iment shown in Figure 2. In this experiment, we analyzed a
DNS amplification attack. The attacker sends small DNS
queries to a server from a spoofed victim address. The DNS
server then sends large responses to the victim. We analyzed
two responses: the impact on the server's CPU utilization
and congestion on the victim' s link. The setup is shown in
Figure 2. The input parameters varied for the DoE are shown



in Table 1. Note that for these particular scenarios, the attack
rate was fixed at 100,000 packets per second.
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Figure 2. DNS amplification attack scenario used for pur-
poses of illustrating Design of Experiments workflow.

Input parameter Levels

ServerLinkCapacity 100, 1000, 10000 Mpbs

ServerCores 1,2,4,8,16

ServerRAIV1 256, 1024,4096. 8192 MB

ServerLogging True, False

Table 1: Parameters and associated levels varied in DoE.

We first performed a full factorial design, running the exper-
iment at all combinations of the above parameter values. This
DoE involves 3*5*4*2 = 120 runs. Generating this full en-

Analysis semble of 120 runs took 12 hours of wallclock time.
Configuration

File The results are shown in Figures 3 and 4. Figure 3 shows that
server logging and number of server cores (and their combi-
nation) are statistically significant for server CPU utilization.
Server link capacity, however, is not. Figure 4 shows the
impact of the input parameters on victim traffic (in packets
per second). This figure shows that server RAM is not sig-
nificant but all other configuration choices are statistically
significant.
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An important statistical analysis that can be performed on a
full factorial design is called "main effects" analysis (add
more description). Whereas the Pareto plots show which
main and interaction effects are significant, a main effects
analysis will quantitatively show the degree of effect. This
information is useful when assessing the sensitivity of the
output metrics on inputs, which can inform a decision maker
where they need to invest in more resources to mitigate the
attack.
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As the main effects plots in Figures 5 and 6 demonstrate, in-
vesting in additional server memory has no effect on either
metric, i.e. the server CPU utilization and the impact on the
victim machine. Thus, there is no need to invest in additional  
memory. However, enabling DNS query logging on the Figure 6. Main effects plots for server CPU utilization
server has a beneficial effect on both metrics, so the server
administrator should enable it.

A more complicated situation arises when considering
whether to add cores to the server. There is a strong beneficial
effect on the server's CPU utilization when adding cores, but
a strong detrimental effect on the intensity of the traffic re-
ceived at the server. To find a configuration that simultane-
ously optimizes both metrics, we ran the DAKOTA/Fire-
wheel experiment with DAKOTA configured to perform a
black box, multi-objective optimization study. The results of
this study are shown in Table 2. The results show a set of
seven Pareto-optimal solutions which, in the absence of other
criteria (e.g. cost), simultaneously minimizes victim traffic
intensity and server CPU utilization.
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Figure 5. Main effects plots for victim attack traffic.
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Parameters Results

ServerCores = 1

ServerLinkCapacity = 100

ServerLogging = yes

VictimPPS = 5520

ServerCPU = 100

ServerCores = 2

ServerLinkCapacity = 100

ServerLogging = yes

VictimPPS = 11559

ServerCPU = 95 .2

ServerCores = 2

ServerLinkCapacity = 1000

ServerLogging = yes

VictimPPS = 11615

ServerCPU = 94.9

ServerCores = 2

ServerLinkCapacity = 10,000

ServerLogging = yes

VictimPPS = 11641

ServerCPU = 92.9

ServerCores = 4

ServerLinkCapacity = 10,000

ServerLogging = yes il

VictimPPS = 23525

ServerCPU = 79.1

ServerCores = 4

ServerLinkCapacity = 1000

ServerLogging = yes

VictimPPS = 24033

ServerCPU = 78.4

ServerCores = 32 -ir
ServerLinkCapacity = 1000

ServerLogging = yes

VictimPPS = 25887

ServerCPU = 12.1

Table 2: Pareto optimal solutions that simultaneously mini-
mize victim traffic and server CPU loads



4. Future work
A future study would also consider the propagation of input
uncertainties to the response metrics of interest, in order to
assess model confidence and robustness, and to assist a deci-
sion maker with assessing any risks that this uncertainty may
pose to the server and/or the victim. In this example, the input
uncertainty would be the attack rate (in DNS queries per sec-
ond), and the responses of interest would continue to be vic-
tim traffic load and server CPU utilization. A full statistical
analysis (e.g. using Latin Hypercube Sampling) on an emu-
lation-based experiment would be computationally intensive,
so a study of various surrogate functions (e.g. Polynomial
Chaos Expansion) and the amount of training data used to fit
those functions would provide interesting insight into their
suitability for efficiently generating statistics.

The full factorial design described in the previous section is
useful because it provides data suitable for main effects and
interaction effects studies. However, the experiment required
12 hours of wallclock time (on a single server) to iterate
through all combinations. As the dimensionality of the pa-
rameter space and number of levels per parameter increases,
fractional factorial designs will be needed to efficiently run
the experiment. As described earlier, there is a rich body of
research in fractional factorial experimentation for other do-
mains, but it is unclear whether these results are valid for
cyber experimentation. For example, cyber systems have dis-
continuous responses (e.g. due to IP packet fragmentation)
and/or long-tailed distributions and rare events (e.g. race con-
ditions) that would may require new strategies for sampling
parameter values in a fractional factorial design.

Similarly, future work in optimization (especially "black
box" optimization, where an external tool drives an experi-
ment in an attempt to find local or global minima/maxima)
would also need to account for discontinuities in responses.
Traditionally, these tools have been coupled to simulation
codes that model continuous behavior (e.g. fluid dynamics
codes). However, discontinuous responses in cyber systems
may cause the black box optimization tool to converge on the
wrong result (e.g. if it is using gradient descent).

5. Summary
We have presented a broad terminology of concepts related
to design of experiments, experimental design, sensitivity
analysis, and uncertainty quantification. We also provided a
demonstration of a full factorial design on a DNS amplifica-
tion attack scenario. The analyses we presented (variable
ranking by importance, analysis of variance main effects
studies, and Pareto optimization) demonstrate a few of the
things that can be learned from ensemble generation of cyber
experiments.

We believe there are many more sophisticated analyses that
can be performed. One example is a "multifidelity frame-
work", where thousands of low fidelity runs (e.g. from a very
coarse Emulytics model or from a network simulator) are
used to augment a small number of high fidelity model runs
to obtain lower-variance estimates on high-fidelity results
than would be possible otherwise [4]. Another example is
robust design or design under uncertainty, where the ensem-
ble generation is done in a nested framework: an outer opti-
mization loop chooses the design settings and an inner UQ
loop chooses the stochastic parameters to vary to obtain an
expected value (for example) which can be optimized. There
is a large and growing interest in various types of surrogate
models (including machine learning) that may have a role in
full-scale cyber experiments which are very expensive to run.
Finally, we expect that sampling methods and dimension re-
duction methods may be customized to address the large
number of input variables which are present in full-scale
cyber experiments.
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