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Lanczos for large-scale Hermitian Eigenvalue problemgE tcaleten

= Lanczos is a powerful method for solving large SYEV, Av = Av

= used is many applications

= effective for computing a few exterior eigenvalues (and eigenvectors)
— several approaches to improve convergence e.g., thick-restart

= applicable for interior eigenvalues with spectrum transformation (e.g., shift-
invert)

= use two main kernels (based on Krylov subspace projection)

= Matrix Vector multiply (SpMV)
for generating Krylov subspace = span(q, Aq, A%q, ...) ’ . .
— often, black box, provided by users —-
= QOrthgonalization O
for generating orthonormal basis vectors '0
— our current focus
= Communication can be expensive (time, and maybe power)
= P2P +irregular data access for SpMV
= all-reduce + BLAS-1 or 2 for Orthogonalization

= becoming more expensive on a newer architecture
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Challenges in computing many eigenvalues

= Some applications require many eigenvalues (e.g., >1% of n)
= electronic structure calculation, normal-mode analysis in structure analysis, etc.

= QOther approaches exist

= Full eigenvalue decomposition
= ScalAPACK, ELPA, EigenExa, etc.
= Stable, but expensive O(n3)

= Spectral Slicing
= SLEPc, EVSL, z-Parse, FEAST, etc.

= Scalable, but several parameters (e.g., windows) and duplicate/missing eigenvalues on the
interface

= lLanczos: it is a challenge both numerically & computationally
= often needs large subspace (e.g., m=2n,)

= require locking (i.e., multiple orthogonalization) to avoid computing the same
eigenvalues (nm? flops)
= This talk: combine s-step with EED+TRLan
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Explicit external deflation

= Shift the computed eigenvalues away from the exterior:
A, = A+aUyu,T

where U, contain computed eigenvectors

= Two issues

= Numerical stability / accuracy (e.g., effects of the errors in the computed
eigenvalues on the accuracy of the next eigenvalues to be computed)

=» on-going studies
= Performance of matrix powers kernel with sparse-plus-low-rank matrix
(A+aUyU,")¥pg fork=1,2,...,s

= deflation of U, becomes expensive as more eigenvectors are computed

=» focus of this talk (SpMV as a black-box) w1




- P
Matrix powers kernel for sparse plus low-rank matrix=' 2w

= standard kernel

| SpMV + deflation
" (P2P + reduce + BLAS-2)

forj=1,2, ..., s
* p:= Apy taly (Ug' ppy)

Orthogonalization |_-
(reduce + BLAS-2)

end

= Each step needs communication
= p2p for SpMV, and global-reduce for deflation
= BLAS-2 kernels (SpMV or GEMYV)

= “Communication-avoiding” (CA) kernel
= One global-reduce per every s steps
= Potential to reduce the communication latency by a factor of s
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- P
Matrix powers kernel for sparse plus low-rank matrix= o

= specialized CA kernel
= if the computed eigenpairs satisfy (exact and orthogonal)
AU=U Ny and UTU, = |
= then recurrence for deflation can be un-rolled
p; = (A+aUyU4")pg
= A (A+aUgUy "y pg + aUgUgT (A+aUyUgT)"pg
= A (A+aUgUyTY Tpg + aUy(Ag+ a 1) UyT(A+aU U T)y-2p,
= Ap;.1 + aUy(Ag+aly1UyTp,

" SpMV with the previous vector p;

= GEMV with the starting vector p,, followed by small local computation
=>» One all-reduce per s steps
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- P
Matrix powers kernel for sparse plus low-rank matrix=' 2w

I. dot-products = Specialized kernel
bo = anpo
1. only one dot-product through GEMV
2. local computation .
for1=1,2,...,8=1 do not GEMM

b; := W;_1bg 2. small local computation

end for ] .
with small W=(A+al)

for deflation

3. GEMM with local vectors

3. local matrix-matrix multiplication
[co,€1,...,€5-1] := Uq4[bg, b1,...,bs-1]

4. MPK with a sparse matrix A

forpj_ ?_ﬁ;gj_io_ 1 4. followed by matrix-powers kernel
J J— J— . .
end for with sparse matrix A

less communication (Sx) and computation (2x)
for deflation

computation | communication, intra inter

flop count volume latency

standard s-nnz(A) 4+ 2nds | s-nnz(A) + 2nds s+ s

comm-avoid | s-nnz(A)+nd-(s+1) | s-nnz(A)+ 2nd 1+1
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Accuracy of computed eigenvalues

= Computed eigenpairs are not exact
= U,JUg=1+F
where F is the orthogonalization error

= AU,=U/A,+E

where E is determined by the stopping criteria

= |f the orthogonality is maintained (e.g., two classical Gram Schmidt),
then norm of F is small

= |t can be shown that if the computed eigenvalues satisfy
1 E]|2

_en(Al +a)?
(Al == 7 allAllL

e n||All>

or [|Elz <7|Al2 < | All2,

then the effects of the errors in the computed eigepairs is small in the
evaluation of MPK (i.e., the same order as the round-off errors)

8/18




: | Neoora
General CA MPK: blocking cover, N. knight, E. Carson, J. Demmel 201%

1. MPK with a sparse matrix A = Matri k | f |
forj=1,2,...,s—1do atrix-powers kernel tor a genera

pj = Apj-1 sparse-plus-low-rank matrix, A+aU,U,"
= No assumption on properties of A or U

2. Block dot-product

B i=UX . [po,p1,-- -, Ps_ti] = Require additional costs, s-1 additional SpMV

and then block dot-product with GEMM

- 2
3. local 'cgrnlqutatlon, O(ds*) flops = specialized CA MPK does not require additional SpMV,
forc? e 8 do and perform GEMV instead of GEMM
§ = Dj
fori=12,...,75—1do
cj:=c; + X;cj_; = Can be applied for TRLan+EED
if.lfi_f;cr' (first performance studies of blocking cover
j = oacj

end for for practical application)

4. generate low-rank correction

Y = U computation | communication, intra inter
:=Uq - [e1,€2,...,¢5] flop count volume latency
ST s-nnz(A) + 2nds s-nnz(A) + 2nds s+s
5. MPK with A to integrate low-rank correction BC | (2s —1)-nnz(A) + 2nds | (2s — 1) -nnz(A) + 2nd 2+1
for j=1,2,..:48 do CA s-nnz(A)+nd- (s+1) s -nnz(A) + 2nd 1+1
P; = Apj—1 Yy,

end for
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Putting all together:
s-step TRLan+EED

Krylov subspace generation

=  Matrix powers kernel
with sparse-plus-low-rank matrix
= Standard kernel
= Specialized/blocking cover CA kernel

= Block orthogonalization

= block Gram Schmidt: orthogonalize
s vectors against previous vectors
at once (single all-reduce)

= Cholesky QR: orthogonalize s vectors
among themselves (single all-reduce)

set q1 = q/||ql|2, k = 0.
for 3=1,2,3,...
1. Initialization.
a. p:=(A+aUsU)aqrs
b. ary1:=qf ,p
C. Pi=P—0rt10k+1 — Sory BiGi
d. Br+41 = [pll2
e. Qr42 = P/Br+1
2. The j-th restart-loop.
fori=k+2:s:m
a. Starting vector p; = q;.
b.[ Matrix Powers Kernel:
forl=1,1+1,...,i+s—1
Pe+1 = (A +aUgUl )pe
end for

c.[ Block three-term orthogonalization:
Ry g:i, it1:i+e = Qi i Pitliits
Pit1:i+s = Pit1:its — Qi—s:iRi—s:i, i41:its
d.| Tall- skmny Cholesky QR factorization:
B := P1+1 l+‘st+1:i+s
Rit1:its, i+1liits = ChOI(B)
Qi+l:i+s = i+1:i+sRl+1 i+s,it+1:i+s
e.|_Reorthogonalize Q;1.; ¢ if necessary:
Classical Gram Schmidt followed by Cholesky QR.
f. Update the projected matrix T3, :
see, e.g., [4, Sec. 4.2.2].
end for
3. The j-th restart.
a. compute all eigenpairs of 73, and the corresponding
residual norms for Ritz pairs by (2).
if stopping criteria is satisfied then
compute desired Ritz vectors and exit.
else restart:
update k (see [14], [13]).
select k£ Ritz values A1, ..., A, of interest, and
compute their Ritz vectors {q1,...,qx}-
g set a; = A; and B3; = [|[Aq; — Aiqill2 by (2),
fori=1;...k;

h. set Q+1 = qm+1-
i. end if

mo a0 o

Sandia
Laboratories
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Experimental setups

= NERSC Cori Haswell nodes
= Each node with Intel Xion E5 at 2.3GHz with 128GB of main memory
= Nodes are connected through Cray Aries (Dragonfly)

= Compiled using the Cray compiler wrapper
= Linked to Intel’s MKL

= Solver parameters

= Shift is chosen based on the next target and the largest computed
eigenvalue, a=Ag+(A-\)/2

= Eigenpairs are considered to be converged with T=10-""

= One MPI process per core
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Accuracy of computed eigenpairs with standard TRLan+EED
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= Relative residual norms with TRLan+EED
= Compute 100 eigenpairs at a time
= SiH4 for DFT electronic structure calculation from Suite Sparse matrix collection
= TRLan+EED obtain desired accuracy
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Accuracy of computed eigenvalues
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= Specialized MPK is as accurate as standard MPK
when tolerance is selected carefully
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Performance results using a diag(12,22,...,n2) with n=10K
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= ReOrtho time reduced through block orthogonalization
= For computing first 100 eigenpairs, TRLan vs Ca-TRLan

= MatOp time reduced through MPK
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Performance results using a diag(12,22,...,n2) with n=10K
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= |ncreasing benefits as more eigenvalues are needed
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Performance results using a DFC matrix (n=97K)
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= Avoiding communication/computation can reduce the run time
=  Speedups of up to 2.3x
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Performance results using a DFC matrix (n=240K)
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= CA variants can maintain the performance benefits over multiple processes

= Needs to address sequential part (e.g., restart)
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Conclusion ) e,

= TRLan+EED for computing many eigenvalues

= s-step method for improving performance by avoiding
communication

= Possible to avoid some computation when the tolerance is
carefully selected

= More theoretical, numerical, and performance studies are
underway

= Low-synchronous orthogonalization kernels
= Effects of inaccurate eigenpairs on EED
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Thank you!!
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