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Lanczos for large-scale Hermitian Eigenvalue problems

• Lanczos is a powerful method for solving large SYEV, Av = AN/

• used is many applications

effective for computing a few exterior eigenvalues (and eigenvectors)

— several approaches to improve convergence e.g., thick-restart

applicable for interior eigenvalues with spectrum transformation (e.g., shift-
invert)

• use two main kernels (based on Krylov subspace projection)

• Matrix Vector multiply (SpMV)
for generating Krylov subspace = span(q, Aq, A2q, ...)

— often, black box, provided by users

• Orthgonalization
for generating orthonormal basis vectors

— our current focus

CPU

Memory

• Communication can be expensive (time, and maybe power)
P2P + irregular data access for

ill-reduce + BLAS-1 or 2 for Orthogonalizatior

becoming more expensive on a newer architecture
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Challenges in computing many eigenvalues
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• Some applications require many eigenvalues (e.g., >1% of n)

• electronic structure calculation, normal-mode analysis in structure analysis, etc.

• Other approaches exist

• Full eigenvalue decomposition

ScaLAPACK, ELPA, EigenExa, etc.

Stable, but expensive O(n3)

• Spectral Slicing

SLEPc, EVSL, z-Parse, FEAST, etc.

Scalable, but several parameters (e.g., windows) and duplicate/missing eigenvalues

interface

• Lanczos: it is a challenge both numerically & computationally

• often needs large subspace (e.g., m=2nd)

• require locking (i.e., multiple orthogonalization) to avoid computing the same

eigenvalues (nm2 flops)

• This talk: combine s-step with EED+TRLan

on the
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Explicit external deflation

• Shift the computed eigenvalues away from the exterior:

Ad := A-FaUdUdT

where Ud contain computed eigenvectors

r, Al A2 A3

(.1 I 1 1
\._ 

.34
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• Two issues

• Numerical stability / accuracy (e.g., effects of the errors in the computed
eigenvalues on the accuracy of the next eigenvalues to be computed)

4 on-going studies

• Performance of matrix powers kernel with sparse-plus-low-rank matrix

(A+aUdUdT)kpo for k = 1, 2, ..., s

deflation of U d becomes expensive as more eigenvectors are computed

4 focus of this talk (SpMV as a black-box)
4/18



Matrix powers kernel for sparse plus low-rank matrix

• standard kernel

for j=1, 2, ..., s

• pi := A pj_1 + aUd (UdT pj-1)

end
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SpMV + deflation
(P2P + uce + BLAS-2) A+atAir)q

Orthogonalization
(reduce + BLAS-2)

• Each step needs communication

p2p for SpMV, and global-reduce for deflation

BLAS-2 kernels (SpMV or GEMV)

• "Communication-avoiding" (CA) kernel

One global-reduce per every s steps

Potential to reduce the communication latency by a factor of s
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Matrix powers kernel for sparse plus low-rank matrix

• specialized CA kernel

• if the computed eigenpairs satisfy (exact and orthogonal)

AUd=UdAd and UdTUd = I

• then recurrence for deflation can be un-rolled

pj := (A+aUdUdT)ipo

:= A (A+aUdUdT)i-1 p0 + aUdUdT (A+aUdUdT)Hp0

:= A (A+aUdUdT)i-1 pc) + aUd(Ad+ a I) UdT(A+aUdUdT)i-2p0

:= Apj_1 + aUd(Ad+al)i-lUdT

SpMV with the previous vector pH

GEMV with the starting vector po, followed by small Iocal computation
4 One 3 11-reduc per s steps
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Matrix powers kernel for sparse plus low-rank matrix

1. clot-products

bo := GU,/ilpo

2. local computation
for j = 1,2,...,s —1 do

bi := Wj—lbo
end for

3. local matrix-matrix multiplication
[co,c1,• • • , cs—i] := Ud[bo,bl, • • • , bs-1]

4. MPK with a sparse matrix A
for j = 1, 2, ... , s do

pj := Apj_1 + ci-1
end for

Sandia
National
Laboratories

• Specialized kernel

1. only one dot-product through GEMV
not GEMM

2. small local computation
with small WMA+al)i
for deflation

3. GEMM with local vectors

4. followed by matrix-powers kernel

with sparse matrix A

less communication (sx) and computation (2x)
for deflation

computation
flop count

cornmunication, intra inter
volume latency

standard
comm-avoid

s • nnz(A) 2nds
nnz(A) nd • (s + 1)

s • nnz(A) 2nds
s • nnz(A) + 2nd
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Accuracy of computed eigenvalues

• Computed eigenpairs are not exact

• UdT Ud = l + F
where F is the orthogonalization error

• A Ud = Ud Ad + E
where E is determined by the stopping criteria

• If the orthogonality is maintained (e.g., two classical Gram Schmidt),

then norm of F is small

• It can be shown that if the computed eigenvalues satisfy

11E112 < ,r < c nall1112 + ck)2 c nIlAll2 
or IIEM2 THAll2 101121

11A112 — — aIIIIII2 a

then the effects of the errors in the computed eigepairs is small in the

evaluation of MPK (i.e., the same order as the round-off errors)
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General CA MPK: blocking cover, N. Knight, E. Carson, J. Demmel 2014 Laboratories

1 1. MPK with a sparse matrix A
for j = 1, 2, . . . , s — 1 do
Pj := Api

end for

2. Block dot-product

B := 11 • [Po,P1, ,138-1]

3. local computation, 0 (ds2) flops
for j = 1,2, ... , s do

ci := bi
for i =1,2,...,j — 1 do

cj := cj Xicj_i
end for
cj := acj

end for

4. generate low-rank correction
Y := Ud • [c1, c2, , cs]

• Matrix-powers kernel for a general

sparse-plus-low-rank matrix, A-FaUdUdT

• No assumption on properties of A or U

• Require additional costs, s-1 additional SpMV

and then block dot-product with GEMM
• specialized CA MPK does not require additional SpMV,

and perform GEMV instead of GEMM

• Can be applied for TRLan+EED
(first performance studies of blocking cover
for practical application)

computation
flop count

communication, intra inter
volume latency

ST
5. MPK with A to integrate low-rank correction BC
for j =1,2,..., s do CA

Pj := Api—i + 3rj
end for

s • nnz(A) + 2nds
(2s — 1) • nnz(A) + 2nds
s • nnz(A) + nd • (s + 1)

s • nnz(A) + 2nds
(2s — 1) • nnz(A) + 2nd

s • nnz(A) + 2nd
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Putting all together:

s-step TRLan+EED

Krylov subspace generation

■ Matrix powers kernel

with sparse-plus-low-rank matrix

• Standard kernel

• Specialized/blocking cover CA kernel

■ Block orthogonalization

• block Gram Schmidt: orthogonalize

s vectors against previous vectors

at once (single all-reduce)

■ Cholesky QR: orthogonalize s vectors

among themselves (single all-reduce)

set qt. = c1/1142, k = O.
for j = 1,2,3,...

1. Initialization.(
a. p:= 

A

b. ak+1 :=+circti-UrdY)PUcik+i
p := P ak+tclk+1 Ei.t Qiqi
Ok+1 := 1113112

e. qk+2 P/Ok+1
2. The j-th restart-loop.
fori=k+2:s:m
a. Starting vector pi = qi.
b.

c.
d.

c.

d.

e.

Matnx Powers Kernel:
for t = +1, s — 1

Pe+i := (A + aUdUS 1)13e
end for
Block three-term orthogonalization:

Ri—s:i, :=
Pi+i:i+s := PH-Li-Fs — Qi—s:iRi—s:i,
Tall-skinny Cholesky QR factorization:
B := Pai;i+sPi+Li+8

:= chol(B)r

:=

Reorthogonalize 0i-1-1-i-1-¢ if necessarv: 

1

Classical Gram Schmidt followed by Cholesky QR.
f. Update the projected matrix Tm:

see, e.g., [4, Sec. 4.2.2].
end for

3. The j-th restart.
a. compute all eigenpairs of Tm and the corresponding

residual norms for Ritz pairs by (2).
b. if stopping criteria is satisfied then
c. compute desired Ritz vectors and exit.
d. else restart:
e. update k (see [14], [13]).
f. select k Ritz values Ai, ,Ak of interest, and

compute their Ritz vectors {qi, , qk}.

g. set ai = Ai and = — by (2),
for i = 1, , k,

h. set qk+i = qm+1.
i. end if

end for
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Experimental setups

• NERSC Cori Haswell nodes

• Each node with Intel Xion E5 at 2.3GHz with 128GB of main memory

• Nodes are connected through Cray Aries (Dragonfly)

• Compiled using the Cray compiler wrapper

• Linked to Intel's MKL

• Solver parameters

• Shift is chosen based on the next target and the largest computed

eigenvalue, a=k+(k-Ad)12

• Eigenpairs are considered to be converged with T=10-11

• One MPI process per core
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Accuracy of computed eigenpairs with standard TRLan+EED
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• Relative residual norms with TRLan+EED

• Compute 100 eigenpairs at a time

• SiH4 for DFT electronic structure calculation from Suite Sparse matrix collection

• TRLan+EED obtain desired accuracy
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Accuracy of computed eigenvalues
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• Specialized MPK is as accurate as standard MPK
when tolerance is selected carefully
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Performance results using a diag(12,22,...,n2) with n=10K
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• ReOrtho time reduced through block orthogonalization

• For computing first 100 eigenpairs, TRLan vs Ca-TRLan

• MatOp time reduced through MPK
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Performance results using a diag(12,22,...,n2) with n=10K
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• Increasing benefits as more eigenvalues are needed
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Performance results using a DFC matrix (n=97K)
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# of eigenpairs

• Avoiding communication/computation can reduce the run time

• Speedups of up to 2.3x
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Performance results using a DFC matrix (n=240K)
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• CA variants can maintain the performance benefits over multiple processes

• Needs to address sequential part (e.g., restart)
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Conclusion

■ TRLan+EED for computing many eigenvalues

■ s-step method for improving performance by avoiding
communication

■ Possible to avoid some computation when the tolerance is
carefully selected

■ More theoretical, numerical, and performance studies are
underway

■ Low-synchronous orthogonalization kernels

■ Effects of inaccurate eigenpairs on EED
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Thank you!!
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