This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-5616C

Matrix Powers Kernels for Thick-restart
Lanczos with Explicit External Deflation

Zhaojun Bai (UCD), Jack Dongarra (UTK),
Ding Lu (UCD), and Ichitaro Yamazaki (SNL)

presented by Hartwig Anzt (UTK)

|IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Rio de Janeiro, Brazil, May 15, 2019

U.8. DEPARTMENT OF UV YA =)
@ E"ERGY .v" Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
Ateint Wectinr Secelyy fulelitation subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Lanczos for large-scale Hermitian Eigenvalue problemgE tcaleten

= Lanczos is a powerful method for solving large SYEV, Av = Av

= used is many applications

= effective for computing a few exterior eigenvalues (and eigenvectors)
— several approaches to improve convergence e.g., thick-restart

= applicable for interior eigenvalues with spectrum transformation (e.g., shift-
invert)

= use two main kernels (based on Krylov subspace projection)

= Matrix Vector multiply (SpMV)
for generating Krylov subspace = span(q, Aq, A%q, ...) ’ . .
— often, black box, provided by users —-
= QOrthgonalization O
for generating orthonormal basis vectors '0
— our current focus
= Communication can be expensive (time, and maybe power)
= P2P +irregular data access for SpMV
= all-reduce + BLAS-1 or 2 for Orthogonalization

= becoming more expensive on a newer architecture

2/18

Challenges in computing many eigenvalues

= Some applications require many eigenvalues (e.g., >1% of n)
= electronic structure calculation, normal-mode analysis in structure analysis, etc.

= QOther approaches exist

= Full eigenvalue decomposition
= ScalAPACK, ELPA, EigenExa, etc.
= Stable, but expensive O(n3)

= Spectral Slicing
= SLEPc, EVSL, z-Parse, FEAST, etc.

= Scalable, but several parameters (e.g., windows) and duplicate/missing eigenvalues on the
interface

= lLanczos: it is a challenge both numerically & computationally
= often needs large subspace (e.g., m=2n,)

= require locking (i.e., multiple orthogonalization) to avoid computing the same
eigenvalues (nm? flops)
= This talk: combine s-step with EED+TRLan

3/18
-

Explicit external deflation

= Shift the computed eigenvalues away from the exterior:
A, = A+aUyu,T

where U, contain computed eigenvectors

= Two issues

= Numerical stability / accuracy (e.g., effects of the errors in the computed
eigenvalues on the accuracy of the next eigenvalues to be computed)

=» on-going studies
= Performance of matrix powers kernel with sparse-plus-low-rank matrix
(A+aUyU,")¥pg fork=1,2,...,s

= deflation of U, becomes expensive as more eigenvectors are computed

=» focus of this talk (SpMV as a black-box) w1

- P
Matrix powers kernel for sparse plus low-rank matrix=' 2w

= standard kernel

| SpMV + deflation
" (P2P + reduce + BLAS-2)

forj=1,2, ..., s
* p:= Apy taly (Ug' ppy)

Orthogonalization |_-
(reduce + BLAS-2)

end

= Each step needs communication
= p2p for SpMV, and global-reduce for deflation
= BLAS-2 kernels (SpMV or GEMYV)

= “Communication-avoiding” (CA) kernel
= One global-reduce per every s steps
= Potential to reduce the communication latency by a factor of s

5/18
-

- P
Matrix powers kernel for sparse plus low-rank matrix= o

= specialized CA kernel
= if the computed eigenpairs satisfy (exact and orthogonal)
AU=U Ny and UTU, = |
= then recurrence for deflation can be un-rolled
p; = (A+aUyU4")pg
= A (A+aUgUy "y pg + aUgUgT (A+aUyUgT)"pg
= A (A+aUgUyTY Tpg + aUy(Ag+ a 1) UyT(A+aU U T)y-2p,
= Ap;.1 + aUy(Ag+aly1UyTp,

" SpMV with the previous vector p;

= GEMV with the starting vector p,, followed by small local computation
=>» One all-reduce per s steps

6/18
_—— e e

- P
Matrix powers kernel for sparse plus low-rank matrix=' 2w

I. dot-products = Specialized kernel
bo = anpo
1. only one dot-product through GEMV
2. local computation .
for1=1,2,...,8=1 do not GEMM

b; := W;_1bg 2. small local computation

end for] .
with small W=(A+al)

for deflation

3. GEMM with local vectors

3. local matrix-matrix multiplication
[co,€1,...,€5-1] := Uq4[bg, b1,...,bs-1]

4. MPK with a sparse matrix A

forpj_ ?_ﬁ;gj_io_ 1 4. followed by matrix-powers kernel
J J— J— . .
end for with sparse matrix A

less communication (Sx) and computation (2x)
for deflation

computation | communication, intra inter

flop count volume latency

standard s-nnz(A) 4+ 2nds | s-nnz(A) + 2nds s+ s

comm-avoid | s-nnz(A)+nd-(s+1) | s-nnz(A)+ 2nd 1+1
7/18

Accuracy of computed eigenvalues

= Computed eigenpairs are not exact
= U,JUg=1+F
where F is the orthogonalization error

= AU,=U/A,+E

where E is determined by the stopping criteria

= |f the orthogonality is maintained (e.g., two classical Gram Schmidt),
then norm of F is small

= |t can be shown that if the computed eigenvalues satisfy
1 E]|2

_en(Al +a)?
(Al == 7 allAllL

e n||All>

or [|Elz <7|Al2 < | All2,

then the effects of the errors in the computed eigepairs is small in the
evaluation of MPK (i.e., the same order as the round-off errors)

8/18

: | Neoora
General CA MPK: blocking cover, N. knight, E. Carson, J. Demmel 201%

1. MPK with a sparse matrix A = Matri k | f |
forj=1,2,...,s—1do atrix-powers kernel tor a genera

pj = Apj-1 sparse-plus-low-rank matrix, A+aU,U,"
= No assumption on properties of A or U

2. Block dot-product

B i=UX . [po,p1,-- -, Ps_ti] = Require additional costs, s-1 additional SpMV

and then block dot-product with GEMM

- 2
3. local 'cgrnlqutatlon, O(ds*) flops = specialized CA MPK does not require additional SpMV,
forc? e 8 do and perform GEMV instead of GEMM
§ = Dj
fori=12,...,75—1do
cj:=c; + X;cj_; = Can be applied for TRLan+EED
if.lfi_f;cr' (first performance studies of blocking cover
j = oacj

end for for practical application)

4. generate low-rank correction

Y = U computation | communication, intra inter
:=Uq - [e1,€2,...,¢5] flop count volume latency
ST s-nnz(A) + 2nds s-nnz(A) + 2nds s+s
5. MPK with A to integrate low-rank correction BC | (2s —1)-nnz(A) + 2nds | (2s — 1) -nnz(A) + 2nd 2+1
for j=1,2,..:48 do CA s-nnz(A)+nd- (s+1) s -nnz(A) + 2nd 1+1
P; = Apj—1 Yy,

end for

9/18

Putting all together:
s-step TRLan+EED

Krylov subspace generation

= Matrix powers kernel
with sparse-plus-low-rank matrix
= Standard kernel
= Specialized/blocking cover CA kernel

= Block orthogonalization

= block Gram Schmidt: orthogonalize
s vectors against previous vectors
at once (single all-reduce)

= Cholesky QR: orthogonalize s vectors
among themselves (single all-reduce)

set q1 = q/||ql|2, k = 0.
for 3=1,2,3,...
1. Initialization.
a. p:=(A+aUsU)aqrs
b. ary1:=qf ,p
C. Pi=P—0rt10k+1 — Sory BiGi
d. Br+41 = [pll2
e. Qr42 = P/Br+1
2. The j-th restart-loop.
fori=k+2:s:m
a. Starting vector p; = q;.
b.[Matrix Powers Kernel:
forl=1,1+1,...,i+s—1
Pe+1 = (A +aUgUl)pe
end for

c.[Block three-term orthogonalization:
Ry g:i, it1:i+e = Qi i Pitliits
Pit1:i+s = Pit1:its — Qi—s:iRi—s:i, i41:its
d.| Tall- skmny Cholesky QR factorization:
B := P1+1 l+‘st+1:i+s
Rit1:its, i+1liits = ChOI(B)
Qi+l:i+s = i+1:i+sRl+1 i+s,it+1:i+s
e.|_Reorthogonalize Q;1.; ¢ if necessary:
Classical Gram Schmidt followed by Cholesky QR.
f. Update the projected matrix T3, :
see, e.g., [4, Sec. 4.2.2].
end for
3. The j-th restart.
a. compute all eigenpairs of 73, and the corresponding
residual norms for Ritz pairs by (2).
if stopping criteria is satisfied then
compute desired Ritz vectors and exit.
else restart:
update k (see [14], [13]).
select k£ Ritz values A1, ..., A, of interest, and
compute their Ritz vectors {q1,...,qx}-
g set a; = A; and B3; = [|[Aq; — Aiqill2 by (2),
fori=1;...k;

h. set Q+1 = qm+1-
i. end if

mo a0 o

Sandia
Laboratories

10/1

. | cnd for =

Experimental setups

= NERSC Cori Haswell nodes
= Each node with Intel Xion E5 at 2.3GHz with 128GB of main memory
= Nodes are connected through Cray Aries (Dragonfly)

= Compiled using the Cray compiler wrapper
= Linked to Intel’s MKL

= Solver parameters

= Shift is chosen based on the next target and the largest computed
eigenvalue, a=Ag+(A-\)/2

= Eigenpairs are considered to be converged with T=10-""

= One MPI process per core

11/1

Accuracy of computed eigenpairs with standard TRLan+EED

10-7 T T T T T
x r=10°
108 F ° r=10""

relative residual norm
S B B
= = ©

—_

o
L
no

i

o
4
w

"y
=
N

0 100 200

300 460 560 660 700
eigenpairs index
= Relative residual norms with TRLan+EED
= Compute 100 eigenpairs at a time
= SiH4 for DFT electronic structure calculation from Suite Sparse matrix collection
= TRLan+EED obtain desired accuracy

12/1

Accuracy of computed eigenvalues

| - - m=1e-6, general —— 7=1e-6, special
- - - 7=1e-7, general — r=1e-7, special
O? - = m=1e-8, general —— 7=1e-8, special
107 ¢ - - m=1e-9, general — r=1e-9, special
£ 45 1
é 10 |
-2
=10 Ill
S 103 ! K
5) | l
\
104
S
EE 10
T 108
107
108 ;
10°° 3
0 200 400 600 800 1000 1200

Restart cycle

= Specialized MPK is as accurate as standard MPK
when tolerance is selected carefully

13/1

Performance results using a diag(12,22,...,n2) with n=10K

60
25840/565 G297/62
50 - [EMatOp H
6844/69 I ReOrtho
M Restart
40 -

7528/78

138/
1380

12176/168 9844/121

8457/93

Iteration time (s)
w
o
T

n
[=]
I

+106/+3
+8/+1

110/-1
-123/

10

5 X 5

100 200 300 400 500 600 700
of eigenpairs

= ReOrtho time reduced through block orthogonalization
= For computing first 100 eigenpairs, TRLan vs Ca-TRLan

= MatOp time reduced through MPK

14/1

Performance results using a diag(12,22,...,n2) with n=10K

300

—©-— Standard 2.0x
—A— Blocking-Cover
- | =B— Communication-Avoiding

100 200 300 400 500 600 700
of eigenpairs

= |ncreasing benefits as more eigenvalues are needed

15/1

Performance results using a DFC matrix (n=97K)

—©— Standard 1 59X
550 ‘ : : , 1 1 —A— Blocking-Cover
= L)|
00 oo e | ea0o —HB— Communication-Avoiding 3X
I ReOrtho
Il Restart

450 -

4324/42

400 - 4440/44
350 - —
@,
4125/40
5300 [0)
g £
= 250 =

3623/35

3186/31

100 200 300 400 500 600 700
of eigenpairs

of eigenpairs

= Avoiding communication/computation can reduce the run time
= Speedups of up to 2.3x

16/1

Performance results using a DFC matrix (n=240K)

000 ; ;
[Deflate
000 + [Ispmv
I ReOrtho
000 I Restart | -
000 -
000 -
000 +
000 +
000 -
000 +
0 0.2-5X
1 2 4 8 16 32 64 128

Process count

'
S
o

—_
n
o

Speedup over standard on one process

—_

o

o
T

[0}
o
T

(o]
o
T

N
o
T

N
o
T

—O—standard
| | B specialized

0 1 1 1 1 1
148 16 32 64 128

Process count

= CA variants can maintain the performance benefits over multiple processes

= Needs to address sequential part (e.g., restart)

17/1

Conclusion) e,

= TRLan+EED for computing many eigenvalues

= s-step method for improving performance by avoiding
communication

= Possible to avoid some computation when the tolerance is
carefully selected

= More theoretical, numerical, and performance studies are
underway

= Low-synchronous orthogonalization kernels
= Effects of inaccurate eigenpairs on EED

18/1

Thank you!!

= ECP PEEKS, for funding

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of

the nations exascale computing imperative.

