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Motivation for Concurrent Multiscale
Coupling
• Large scale structural failure frequently

originates from small scale phenomena such
as defects, microcracks, inhomogeneities and
more, which grow quickly in unstable manner.

• Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks,
etc.) and large scale (vibration, impact, high
loads and other perturbations).

Concurrent multiscale methods are
essential for understanding and prediction
of behavior of engineering systems when a

small scale failure determines the
performance of the entire system.
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Roof failure of Boeing 737 aircraft due to

fatigue cracks. From imechanica.org

high-pressure
hydrogen gas

tructural scale, -m

Surface flaw in pressure

vessel: interacts with

microstructure, which may

or may not lead to failure.

->

- grain boundaries

- defonnagon twins

• • grain scale evolugon, -ym



Requirements for Multiscale Coupling Method
o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

o "Plug-and-play" framework: simplifies task of meshing complex geometries!

> Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

> Ability to use different solvers/time-integrators in different regions.

o Coupling does not introduce
nonphysical artifacts.

o Theoretical convergence
properties/guarantees.

nl
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• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains. fr.- -84'41"

Crux of Method: if the solution is known in regularly shaped domains, use

those as pieces to iteratively build a solution for the more complex domain.

Initialize:

• Solve PDE by any method on 1 w/ initial guess for Dirichlet BCs on Fr

Basic Schwarz Algorithm
H. Schwarz (1843 — 1921)

Iterate until convergence:

• Solve PDE by any method (can be different than for .121) on .122 w/
Dirichlet BCs on F2 that are the values just obtained for .121.

• Solve PDE by any method (can be different than for .122) on S21 w/
Dirichlet BCs on F1 that are the values just obtained for .122.
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• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Initialize:

• Solve PDE by any method on 1 w/ initial guess for Dirichlet BCs on Fr

Basic Schwarz Algorithm
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H. Schwarz (1843 — 1921)

Iterate until convergence: Requirement for convergence: n n2 #
• Solve PDE by any method (can be different than for .121) on .122 w/

Dirichlet BCs on F2 that are the values just obtained for .121.

• Solve PDE by any method (can be different than for .122) on S21 w/
Dirichlet BCs on F1 that are the values just obtained for .122.

• Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for
solving multiscale partial differential equations (PDEs).
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Schwarz Alternating Method for Multiscale
Coupling in Quasistatics
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1: yo(°) idx in C22
2: n 1
3: repeat
4: 41)(n) x on acpS2i
5: cp(n) Pcki [cp(n-1)] on ri
6: (10(n) arg min 43.i[cp] in S2i

wEsi
7: n n + 1
8: until converged

i> initialize to zero displacement or a better guess in c22

t>. Schwarz loop
i> Dirichlet BC for 52i
i> Schwarz BC for Sti

i> solve in Qi

Advantages:

• Conceptually very simple.

• Allows the coupling of regions with different non-conforming meshes, different element
types, and different levels of refinement.

• Information is exchanged among two or more regions, making coupling concurrent.

• Different solvers can be used for the different regions.

• Different material models can be coupled if they are compatible in the overlap region.

• Simplifies the task of meshing complex geometries for the different scales.



Theoretical Foundation
Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

• Sobolev (1936): posed Schwarz method for linear
elasticity in variational form and proved method's
convergence by proposing a convergent sequence of
energy functionals.

• S. G. Mikhlin (1951): proved convergence of Schwarz
method for general linear elliptic PDEs.

• A. Mota, I. Tezaur, C. Allemaii (2017r derived a proof of
convergence of the alternating Schwarz method for the
finite deformation quasi-static nonlinear PDEs (with
energy functional ii)[(p] defined below), and determined a
geometric convergence rate for the finite deformation
quasi-static problem.

41)[(p] = 113 W(F, Z, T) dV — 113 B • dV-faTBT • cp dS

V •P+B= 0

S. L. Sobolev (1908 — 1989)

S. G. Mikhlin (1908 — 1990)

A. Mota, I. Tezaur, C. Alleman

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMA



Four Variants* of Schwarz

1: 4)4- 4) in Oh 41) 4- x(.1041)) on apn,, z(01) 4- n) on rt
2: 42) 4- xg) in n2, 4,2) 4— x(.74,2)) On 8„,n2, w,32) r x(,32) on r2
3: repeat

4:

5:
6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

v(i) 
x(B)

x131) Pizm(8) + Q1242) +GI2432)
repeat

AMT 1— —KL(4); WV); Z(01))\R(1)(4); Mi?); 2(01))

4) 4— 4) + A4.1)

Until 116'41)11/114)11 < emachine

Y
(2) x(;)

.(;) f pnixT + Q21.11) + Gni zW)

repeat
Axsp -41(4); me); z(02))\4)(wir ; x12); m(02))

4) 4— xSP 6.4)
min < calamine

16: anta [(IV) — (111/(2) miPl1/11411) 21 1/2 —< elm:bine

Full Schwarz

> initialize for n,
o initialize for n2
o Schwarz loop

o for convergence check

o project from 122 to r 1

o Newton loop for n,
o linear system

o tight tolerance

n• for convergence check
o project from 121 to r2
o Newton loop for n2

o linear system

> tight tolerance

o tight tolerance

a
9:

10:

11:
12: repeat

13: .6.4) 4- -41(4;42); m(;))\4)(wir ; .1.); z(s2))

14:

ws1) xlp in ni, 4)4- x(Xi))on awn', m(01) 4- x(;) on ri
2: 4) Xg) in n2, .(,,2) 4— x(X?)) on 8,pS2a, 4) 1— X(02) on r2
3: repeat

4: 7/(1) 4- 4)

5: x(01) 4- pi2mT + Q1201,2) +GI2X(02)
6: repeat

7: -KZ)3(x(,:); 41); mW))\k,:)(4); 41); m(;))

m(iP 1— 4) + Axg)

until <

v(2) x(j)

W(02) P21X(EP +Q214" G21a(tii

MB
(2) (2) _,_ ,(2)

-'-

15: unti1116411/11mT11 <E
1/2

16: until [(1111(1) cag)11/110(rP11)2 + (WM - 411/114111 5 em.chinc

Inexact Schwarz

ts initialize for f11

o initialize for 112

o Schwarz loop

o for convergence check

oprojectfromfE2tor1

o Newton loop for 121

o linear system

o loose tolerance, e.g. e E [113-4, 10-1]

o for convergence check

o project from n, to r2
o Newton loop for 02

> solve linear system

o loose tolerance, e.g. c E [10-4,10-1]

> tight tolerance
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wg) 4- 4) in n,, 41) x(XV)) on asoni, q) 4- x,(31) on ri
2: x(,,r 4— /Cr in n2, 42) 1— 7dX12))0n 8pr22,4) 4— /42) on F2
3: repeat

4: 4) 1— Pi2X(j) 1:412m12) G12X(02)

5: .6,4) -ics,13(xip;m1i),.(„ii))\m,v(mT, 4,1); 0,91))
6: 4) 4- 4)+6.4)

7: x(02) 4- P214) + Q214,1) + G24)

8: 
Ax(ip 4_ _K(:17(0(j) ; 42); m(p RT(,(Er; 4); x(02))

9: xlEr 1— ZT + 6,4)

le until [(11,64)11/14)11)2 (IlAwnl/llOnl)2] 1/2 emednne

Modified Schwarz

> initialize for n,
> initialize for f22

> Newton-Schwarz loop

> project from 5/2 to rt
o linear system

> project from 121 to r2
o linear system

> tight tolerance

1: 4) 4— X1P in 01, mV) x(XV)) on

2: w(;) .74r in n2, 42) 1— x(4)) on 8,p112,

3: repeat

4: {pm(1)1 (1<:))3+K,Wilin K ,(44)3 H12 {—Rg)}

Am11) K(Ai3R21 42)3 +1<:,),H22 —RA)

5: 
(1.) (i) 

7-
,,,,„(1)

ma MB

6: 4) x(j) + ,6,X(E.V

2, , 2] 1/2 <

7: until [(11.6mT11/110(in1)2 + (11,6411/11e1311) _ emeehme

Monolithic Schwarz

o initialize for n,
> initialize for t22

is Newton-Schwarz loop

o linear system

o tight tolerance

*A. Mota, I. Tezaur, C. A leman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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12: repeat
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2: 4) Xg) in n2, .(,,2) 4— x(X?)) on 8,pn2, 4) 1— X(02) on r2
3: repeat

4: y(1)4- 4)
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6: repeat
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until <

v(2) x(j)

W(02) P21X(E1) +Q214" G21a(tii

MB
(2) (2) _,_ ,(2)

-'-

15: unti1116411/11mT11 < e 
s 21 1/2

16: until [(111/(1) - cag)11/11411)2 + (1111(2) - 411/n401 5 rnachee

Inexact Schwarz

ts initialize for 121

o initialize for 1/2

o Schwarz loop

o for convergence check

oprojectfromfE2tor1

o Newton loop for 121

o linear system

o loose tolerance, e.g. e E [113-4, 10-1]

o for convergence check

o project from n, to r2
o Newton loop for 02

> solve linear system

o loose tolerance, e.g. c E [10-4,10-1]

> tight tolerance
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Least-intrusive variant: by-passes Schwarz iteration,

no need for block solver.

wg) 4- 4) in n,, 41) x(Xe)) on 8,„,01, q) 4- x,(31) on r,
2: x(,,r 4— /Cr in n2, 42) 1— 7dX12))0n 8pr22,4) 4— /42) on F2
3: repeat

4: 4) 1— Pi2X(j) 1:412m12) G12X(02)

5: .6,4) -Ks83(xip; mf,i), m(01)) \ R(1)(mT, 4,1); 0,91))
6: 4) 4- 4)+6.4)

7: x(02) 4- P214) + Q214,1) +G24)

8: 
Ax(ip 4_ _K(:17(0(j) ; 42); m(p RT(,(Er; 4); x(02))

9: xlEr 1— ZT + 6,4)
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Modified Schwarz

> initialize for n,
> initialize for f22

> Newton-Schwarz loop

> project from 5/2 to r,
o linear system

> project from f21 to r2
o linear system

> tight tolerance

1: 4) 4— X1P in 121, mV) x(XV)) on VII,

2: w(;) .74r in n2, 42) 1— x(4)) on 8,p112,

3: repeat

4: {pm(1)1 (1<:))3+K,Wilin K ,(44)3 H12 {—Rg)}

Am11) K(Ai3R21 42)3 +1<:,),H22 —RA)

5: 
(1.) (i) ,,,,„(1)
ma

6: 4) x(j) + ,6,X(E.V

„2, , 2] < 1/2

7: until [(11.6mT11/110(inl)2 + 01,64 _ emeehme

Monolithic Schwarz

o initialize for n,
> initialize for t22

is Newton-Schwarz loop

o linear system

o tight tolerance

*A. Mota, I. Tezaur, C. A leman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



5:
6:

7:

8:

9:

10:

11:
12:

13:

14:

15:

Four Variants* of Schwarz
Most performant method: monotonic convergence,

theoretical convergence guarantee.

1: 4) 4- 4) in nt, mV) 4- X(Xj,1)) on .9,o52i, m(;) n) on r 1
2: X(Er xj:2, in n2, z12) 4- x(x1,2)) on 8,ps.12, x,(92) on r2
3: repeat

4: 1/(1) 1- X(1)

X(;) P12X82) C2124,2) + G124)
repeat

A4) 1- -/C4(,83(4);4);.(p)\RT(.sp,.1,i),.(0,))

x(g) 1- 4) 4- A4)
=en 1164)11/114)11 < eraannine

Y
(2)

X(4?) 1- P21X(EP -i- Q2141) + G210(01)
repeat
Ax(Er 4_ _i<421(x(Er; m

6
)) R(r(zT; x12); m(02))

XV) 1- 4) 4- AZT

'Mtn 10'4) < 
1/2

16: until [(ilY(1) z(2Pii/liz(rPil)2 + (HIP) 2 _<

Full Schwarz

o. initialize for

o initialize for 02
o Schwarz loop

o. for convergence check

o project from n2 to 1.1
o Newton loop for Sit

linear system

o tight tolerance

o for convergence check

o project from 521 to r2
o Newton loop for 02

in. linear system

o tight tolerancc

o tight tolerance

1: 4) 1- Xj1) in f2t, 4,1) 4- ,C(Xnon apsh, x(so 1- X(01) on ri

2: z(2) 1- 4) in n2, 4,2) x(x1,2) o,n2, xS2) 1- X.,(92) on P23: 44.1

4: y(1) 1- X(Eli)

5: 41) 1- P124) -I- (412z12) Gi4)
6: repeat

7 ,n,m(EP 1- -K,(41,)3(MT;.1i);.(01))\./e,v(.(,;),.10; 4))

8 miP + 6,4)

9: until 11.64)11/HzTH < e
10: y(2) 1- MT

11: X(02) 1- P21z(EP -i- C/214) + G210,31)
12: repeat

13: 
Azir -42)3(z(Er; m?);.(02))\,er (.(Er;.12),.s2))

14: x(g) xgz)+ AmV)

15: until IlAzTH/110TH <c 
21 1/2

16: until [(111/(1) 44)11/114)11)2 010) ernachine

Inexact Schwarz

o initialize for 121

o initialize for n2
o. Schwarz loop

o for convergence check

n. project from n2 to r,
o Newton loop for 01

n. linear system

o. loose tolerance, e.g. E E [10-4, 10-1]

o for convergence check

o project from 01 to r2
o Newton loop for n2

o. solve linear system

o loose tolerance, e.g. E E [10-4, 1.0-1

o tight tolerance
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5:

6:

7: m(02) 4- P21M(EP + (4214) -I- G214)
L.(2)

8: -̀..B , .1E1

9: m(j) 4- XV)} AX.V

10: until [(11Az(zPil/14)11)2 (HAænl/ilziVii)

1: 4) 4- X151) in 01, mV) x(.7C 1)) on apS2t, 4) 4- 4) on Pt

2: m(Er xg) in 02, 42) 4- 74(4)) on 8012, 4) 1-142) on 1'2

3: repeat
4: 4) 4- P].2mr + Q1242) + G124)

Azg) 
4-

 -.K.(,:.2,(4); z11); 4)) \ (m(E:); 4); 4))

4) 1- 4) 4- A4)

2] 1/2

Emschine

Modified Schwarz

o initialize for n,

o initialize for n2
o Newton-Schwarz loop

o project from n2 to r1

o linear system

o project from n, to r2
o. linear system

r. tight tolerance

l: 4) 4- 4) in nt, 4,1) 4- x(Xe)) on acont,

2: .(Er 4_ 4) in s-22, 42) 4- x(4)) on 8,002,

3: repeat
{ px(1) 1 //CD, + K(AlAH11 ICV3H12 ) {—R(1)}

4: Aji I 4- rc(2/ T./ \ aa6)
--B) --Ag--21 IC(A2L + 424122 --...4

5: 4)4_4+ A4)
6: 4) 4- 4) 4- A64)

s 

.1 
21 1/2

un7: til [(11.6zT11/114311)2 + (HAmiEr11/11x)j)11)  5 emachine

Monolithic Schwarz

o. initialize for ni

o initialize for 02
o Newton-Schwarz loop

o linear system

O. tight tolerance

*A. Mota, I. Tezaur, C. A leman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Implementation within Albany Code
The proposed quasistatic alternating Schwarz method is

implemented within the LCM project in Sandia's open-source
parallel, C++, multi-physics, finite element code, Albany.

■ Component-based design for rapid development of
capabilities.

■ Contains a wide variety of constitutive models.

■ Extensive use of libraries from the open-source Trilinos
project.

■ Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

■ Use of the Sacado package for automatic
differentiation.

■ Use of Teko package for block preconditioning.

■ Parallel implementation of Schwarz alternating method
uses the Data Transfer Kit (DTK).

■ All software available on GitHub.

https://github.com/gahansen/Albany

https://github.com/trilinos/trilinos

https://github.com/ORNL-

CEES/DataTransferKit
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Cuboid Problem: Convergence with
Overlap & Refinement

Below: Convergence of the cuboid
problem for different mesh sizes
and fixed overlap volume fraction.
The Schwarz alternating method

converges linearly.
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(h1, h2) = (1, 1)

(hi, h2) = (1, 1)

(hi, h2) = (1, A)

(h1, h2) = (1, i)

•—•

A—A

•—•

•—•

A—A (h1, h2) = (1, 1)

•—• (hi., h2) = (1, 1)

•—• (hi., h2) = (1, I)

•—• (h1, h2) = (1, 1)

•—• (ill, h2) = (i, 1)

•__. (ht, h2) = (1, 1)

0.2

0.1

0.0
4

Overlap Volume Fraction
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N—N (h1, h2) = (1, 1)

A—A (hi, h2) = (1, A)

•—• (hi, h2) = (1, A)

*__. (Iii, h2) = (1, 1)

A—A (hi, h2) = (1, A)

•--• (hi, h2) = (1,1)

•—• (hi, h2) = (1,1)

•—• (hi, h2) = (1,1)

*__. (14, h2) = (1, D

•—• (hi, h2) = (1,1)

Above: Convergence factor it as a
function of overlap volume and
different mesh. There is faster

linear convergence with increasing
overlap volume fraction.

Ay(m+l) < oy(m)



Cuboid Problem: Schwarz Error

iZ

,r

Osp_

12120•42

Subdomain u3 relative error o-33 relative error

Q1 1.24 x 10-14 2.31 x 10-13

Q2 7.30 x 10-15 3.06 x 10-13
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Quasistatic Example #2: Notched Cylinder

128

64

(a) Schematic

32

16

8

16

8

16

32

(b) Entire Domain S2 (c) Fine Region Ci
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(d) Coarse Region C22

• Notched cylinder that is stretched along its axial direction.

• Domain decomposed into two subdomains.

• Neohookean-type material model.



Notched Cylinder: Conformal HEX-HEX Coupling

(b) C22

Absolute residual tolerance

u3 relative error

121 Q2

1.0 x 10-4 7.60 x 10-3 3.20 x 10-3

1.0 x 10-8 3.10 x 10-5 1.71 x 10-5

1.0 x 10-12 1.34 x 10-9 5.10 x 10-19

1.0 x 10-14 1.23 x 10-11 4.69 x 10-12

2.5 x 10-16 1.14 x 10-13 8.37 x 10-14

(C) C2ref

u3
6.400e-03
0.006

0.005

=0.003

0.002

0.000e+00



Notched Cylinder: TET-HEX Coupling Sandia
National
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■ The Schwarz alternating method is capable of coupling different mesh topologies.

■ The notched region, where stress concentrations are expected, is finely meshed with

tetrahedral elements.

■ The top and bottom regions, presumably of less interest, are meshed with coarser

hexahedral elements.



Notched Cylinder: TET-HEX Coupling
Sandia
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Notched Cylinder: Conformal TET-HEX

Coupling

(b) Q2

Absolute residual tolerance
u3 relative error

C21 C22

1.0 x 1O-14 9.27 x 10-3 3.70 x 10-3

SantlaLT.) labNatogodes

u3 error
5.820e-05

4e-5

—3e-5

10.000e+00



Notched Cylinder: Coupling Different Materials
The Schwarz method is capable of coupling regions with different material models.

• Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.

• Coarse region is elastic and fine region is elasto-plastic.

• The overlap region in the first mesh is nearer the notch, where plastic behavior is
expected.

Coupled regions

Coarse, elastic region

Fine, elasto-plastic region

Overlap far from notch. Overlap near notch.

z 
 IMMEM.

'rnimii11111z  111•111■1111M\

lihrifek /111WIL,

MAIMIMAMMIUM MU% MAWz 

LINNEMMINIIMMI
IMMIMMEHMEM 

MED



Notched Cylinder: Coupling Different Materials
Need to be careful to do domain decomposition so that

material models are consistent in overlap region.

• When the overlap region is far from the notch, no plastic deformation exists in it: the
coarse and fine regions predict the same behavior.

• When the overlap region is near the notch, plastic deformation spills onto it and the two
models predict different behavior, affecting convergence adversely.

eqps_l eqps_l
0.0093 - 0.0093 -

- 0.008 0.008

I
0.006 0.00

0 004 0.00

0.002 0.00

0 = 0 =

Overlap far from notch. Overlap near notch.



Quasistatic Example #3: Laser Weld

Laser weld specimen Single domain discretization

• Problem of practical scale (-200K dofs).

• isotropic elasticity a n d J2 plasticity
with linear isotropic hardening.

• Identical parameters for weld and base
materials for proof of concept, to
become independent models.

Cauchy_Stress_05
■ 4.0000+01

30

20

.. ........ . .... .

Coupled Schwarz discretization
(50% reduction in model size)

Cauchy_Stress_05

r
.0000-01

- 30

20

- 10

10.0000-00

. ..... . .
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Laser Weld: Strong Scalability of Parallel
Schwarz with DTK

• Near-ideal linear speedup (64-1024 cores).

64

32

16

2

Sandia
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132 64 128 256 512 1024 2048

Number of Processors

Data Transfer Kit (DTK)
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Schwarz Alternating Method for
Dynamics

• In the literature the Schwarz method
is applied to dynamics by using space-
time discretizations.

Time

QI

T1

, Q*2

T2

Overlapping non-matching meshes and

time steps in dynamics.
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Schwarz Alternating Method for
Dynamics

• In the literature the Schwarz method
is applied to dynamics by using space-
time discretizations.

Pro Can use non-matching meshes
and time-steps (see right figure).

Con Unfeasible given the design of our
current codes and size of simulations.

Time

QI

T1

_. Q*2

T2

Overlapping non-matching meshes and

time steps in dynamics.

Sandia
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Space



Schwarz Alternating Method for Dynamic
Multiscale Coupling

To

 1
1 1

1- -I
1 1

k
1

Step 0: Initialize i = 0 (controller time index).

T1
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Controller time stepper = convenient
checkpoint to facilitate implementation

Controller time stepper

Time integrator for ,(21

Time integrator for ,(22



Schwarz Alternating Method for Dynamic
Multiscale Coupling

To

Integrate using At1

rl

Q2

 1
 ►

T1

Interpolatelfrom

,Q2 to r1
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Controller time stepper = convenient
checkpoint to facilitate implementation

Controller time stepper

Time integrator for ,(21

Time integrator for ,(22

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance 1/1 solution from time Ti to time T1+1 using time-stepper in 1/1 with
time-step Atl, using solution in 1/ 2 interpolated to r1 at times Ti + mdt1.



Schwarz Alternating Method for Dynamic
Multiscale Coupling

To

 1
T1

Interpolate

i' from ,Q1 to r2

Integrate using At2

 .
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Controller time stepper = convenient
checkpoint to facilitate implementation

Controller time stepper

Time integrator for ,(21

Time integrator for ,(22

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance 1/1 solution from time Ti to time T1+1 using time-stepper in 1/1 with
time-step Atl, using solution in 1/2 interpolated to r1 at times Ti + mdt1.

Step 2: Advance 1/2 solution from time Ti to time T1+1 using time-stepper in 1/2 with
time-step At2, using solution in 1/1 interpolated to 1'2 at times Ti + nAt2.



Schwarz Alternating Method for Dynamic
Multiscale Coupling

To

1

 1

Sandia
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Controller time stepper = convenient
checkpoint to facilitate implementation

Controller time stepper

Time integrator for ,(21

Time integrator for ,(22

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance 1/1 solution from time Ti to time T1+1 using time-stepper in 1/1 with
time-step Atl, using solution in 1/ 2 interpolated to r1 at times Ti + mdt1.

Step 2: Advance 1/ 2 solution from time Ti to time T1+1 using time-stepper in 1/ 2 with
time-step At2, using solution in 1/1 interpolated to 1'2 at times Ti + nAt2.

Step 3: Check for convergence at time Ti+1.



Schwarz Alternating Method for Dynamic
Multiscale Coupling

To

Integrate using dt1

rl

Q2

 1
 ►

T1

Interpolate-I-from

fi 2 t o
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Controller time stepper = convenient
checkpoint to facilitate implementation

Controller time stepper

Time integrator for ,(21

Time integrator for ,(22

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance 1/1 solution from time Ti to time T1+1 using time-stepper
time-step Atl, using solution in 1/ 2 interpolated to r1 at times Ti + mdt1.

Step 2: Advance 1/ 2 solution from time Ti to time T1+1 using time-stepper
time-step At2, using solution in 1/1 interpolated to 1'2 at times Ti + nAt2.

Step 3: Check for convergence at time Ti+1.
➢ If unconverged, return to Step 1.

in ill with

in 1/ 2 with



Schwarz Alternating Method for Dynamic
Multiscale Coupling

r,

Q2

Sandia
National
Laboratories

Controller time stepper = convenient
checkpoint to facilitate implementation

T1 T2

  Controller time stepper

Integrate using At1

Interpolate from
/if "N1/ 2 to rl

  Time integrator for

  Time integrator for ,(22

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance 1/1 solution from time Ti to time T1+1 using time-stepper in 1/1 with
time-step Atl, using solution in 1/ 2 interpolated to r1 at times Ti + mdt1.

Step 2: Advance 1/ 2 solution from time Ti to time T1+1 using time-stepper in 1/ 2 with
time-step At2, using solution in 1/1 interpolated to r2 at times Ti + nAt2.

Step 3: Check for convergence at time Ti+1.
➢ If unconverged, return to Step 1.
➢ If converged, set i = i + 1 and return to Step 1.



Schwarz Alternating Method for Dynamic
Multiscale Coupling

T1
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Controller time stepper = convenient
checkpoint to facilitate implementation

T2

  Controller time stepper

Integrate using At1

Interpolate from
/if "N,Q2 to I',

h

  ' Time integrator for fli

  Time integrator for ,(22

1

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance 1/1 solution from time Ti to time T1+1 using time-stepper in 1/1 with
time-step Atl, using solution in 1/2 interpolated to r1 at times Ti + mdt1.

Step 2: Advance 1/2 solution from time Ti to time T1+1 using time-stepper in 1/2 with
time-step At2, using solution in 1/1 interpolated to r2 at times Ti + nAt2.

Step 3: Check for convergence at time Ti+1.
> If unconverged, return to Step 1.
> If converged, set i = i + 1 and return to Step 1.

Can use different integrators
with different time steps

within each domain!



Schwarz Alternating Method for Dynamic
Multiscale Coupling: Theory

• For quasistatics, we derived a proof of convergence of the alternating Schwarz
method for the finite deformation problem, and determined a geometric
convergence rate [(Mota, Tezaur, Alleman, CMAME, 2017) and previous talk].

Sandia
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Theorem 1. Assume that the energy functional cb[cpi satisfies properties 1-5 above. Consider the Schwarz alternating
method qf Section 2. defined by (9)—(13) and its equivalent fbrm (39). Then

(a) 0[(/3(())] > 4'N5(1)1 > > 41R3(n-1)1 > 45[(16(12)] > • • • > 45R017 where cp is the minimizer of O[co] over S.

(b) The sequence {cpO}} defined in (39) converges to the minimizer e.p of [c,o] in S.

(c) The Schwarz minimum values Oki)(n)] converge monotonically to the minimum value [(,,o] in S starting from any
initial guess ‘,3(0)

Extending these results to dynamics is work in progress.

• Quasistatic proof extends naturally assuming conformal meshes and the same
time step is used in each Schwarz subdomain.

• Some analysis of Schwarz for evolution problems was performed in (Lions, 1988)

and may be possible to leverage.

• Our numerical results suggest theoretical analysis is possible.
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Implementation within Albany Code
The proposed dynamic alternating Schwarz method is

implemented within the LCM project in Sandia's open-source
parallel, C++, multi-physics, finite element code, Albany.

■ Component-based design for rapid development of
capabilities.

■ Contains a wide variety of constitutive models.

■ Extensive use of libraries from the open-source Trilinos
project.

■ Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

■ Use of the Sacado package for automatic
differentiation.

■ Use of Tempus package for time-integration*.

■ Parallel implementation of Schwarz alternating method
uses the Data Transfer Kit (DTK).

■ All software available on GitHub.

https://github.com/gahansen/Albany

https://github.com/trilinos/trilinos

https://github.com/ORNL-

CEES/DataTransferKit

* Current .ynamic c warz imp ementation in Albany requires same At in different subdomains.
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Dynamic Example #1: Elastic Wave Propagation

• Linear elastic clamped beam with Gaussian initial condition for the z
-displacement (see figures to the right and below).

• Simple problem with analytical exact solution but very stringent test
for discretization methods.

• Test Schwarz with 2 subdomains: no = (0,0.001) x (0.001) x
(0,0.75),D,1 = (0,0.001) x (0.001) x (0.25,1).

0.01

0.008

0_006

0.004

0.002
0.
ur,

1:7 
0

NJ

-0.002

Clamped Beam Gaussian Z Problem

T = 0
T = 1.0e-3

0 2 0.4 0 6 0.8 1

Left: Initial condition

(blue) and final solution

(red). Wave profile is

negative of initial profile

at time T = 1.0e-3.

Time-discretizations:

Newmark-Beta (implicit,

explicit) with same At.

Meshes: hexes, tets



Elastic Wave Propagation
0 01

0 008

0 006

0.004

0.002

N

-0,002

-0.004

-0.006

-0.008

-0.01

Time Time = 0
-,cc  

o C 2

z-displacement

Dynamic Schwarz coupling introduces no
dynamic artifacts that are pervasive in

other coupling methods!

z-velocity
-200

-300

-400

-500  
C. S i c C 2 C.1 0.

  single
— — — srQ

Table 1: Averaged (over times + domains) relative errors in z—displacement
(blue) and z-velocity (green) for several different Schwarz couplings, 50%

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal hex-hex 2.79e-3 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2

Nonconformal hex-hex 2.90e-3 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3

Tet-hex 2.79e-3 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2



Elastic Wave Propagation

Energy Conservation

2.2149

2.2149

2.2149

2.2149

2.2149

2.2149 r

2.2148
0

Clamped Gaussian Z Problem Total Energy

O. 5
Tirnp

12o dominant

— — —1/1 dominant

— — — Single il
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Total energy is conserved
and matches single-domain

total energy.

• For clamped beam problem, total energy (TE = 0.5.x.TK.x + 0.5±TM.i) should be conserved.

• Total energy is calculated in 2 ways: with most of contribution from no and from ni.



Example #2: Tension Specimen
• Uniaxial aluminum cylindrical tensile

specimen with inelastic J2 material
model.

• Domain decomposition into two
subdomains (right): no = ends,
nil = gauge.

• Nonconformal hex + composite tet
10 coupling via Schwarz.

• Implicit Newmark time-integration
with adaptive time-stepping
algorithm employed in both
subdomains.

• Slight imperfection introduced at
center of gauge to force necking
upon pulling in vertical direction.

no

11111101111

Illaillillilli

111111111111111111

1111111111111111111
111111111111111111
illiMillMillii
1101111111111110111
11011111111111111111
11111111111111111111111
I

+
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Tension Specimen

Tirn e: 0.000000

i11111111111111111
Nll••••••••••1111

111 llllllllllllllllll
111111111111111111
11111ill11111110111
111111111111111111
111111111111111111
11111111111111111

11111111111111111

11111111111111111

y-displacement
1.038e-02

alX15

— 1.47e-9

-O. CO5

I1. CO8e-02

Average of —7 Schwarz
iterations/time step required
for convergence to Schwarz

tolerance of le-6.

Nodal eqps*
..226FrXi

—- 1 otiCC

1. 1132

—O. 5556

VD:Me-FOG

Sandia
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*Nodal eqps = equivalent plastic strain computed via weighted volume average.



Example #3: Bolted Joint Problem
Problem of practical scale.

• Schwarz solution compared to single-domain
solution on composite tet 10 mesh.

• 1/1 = bolts (composite tet 10),D,2 = parts (hex).

• Inelastic J2 material model in both subdomains.
• ni: steel
• 1/2: steel component, aluminum (bottom) plate

Sandia
National
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• BC: x-disp = 0.02 at T =

1.0e-3 on top of parts.

• Run until T = 5.0e-4 w/ dt =

le-5 + implicit Newmark

with analytic mass matrix

for composite tet 10s.

t
1

t

f



Bolted Joint Problem

I ir lc 0.000000

x-displacement

Single n Schwarz



Bolted Joint Problem

Nodal Equivalent Plastic Strain (eqps)

0 Mleri-00 011:1 75 Cu:i - 1.

1111111111111111111111111111111W

Ti m e: 0.000000

Cross-section of bolts obtained via clip (right)
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Bolted Joint Problem
Some Performance Results

Schwarz / solver settings

• Relatively loose Schwarz

tolerances were used:

• Relative Tolerance: 1.0e-3.

• Absolute Tolerance: 1.0e-4.

• Newton tolerance on NormF: le-8

• Linear solver tolerance: le-5

• MueLu preconditioner

70

60

20

10
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National
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0 a5 1 1.5 2 26 3 36 4 4.5 5

tine (s) x104

• Top right plot: # Schwarz iterations for each time step.

• After start-up, # Schwarz iterations / time step is —9-10. This is not
bad given how small is the size of the overlap region for this problem.
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Summary
Sandia
National
Laboratories

The alternating Schwarz coupling method has been developed/implemented for

concurrent multiscale quasistatic & dynamic modeling in Sandia's Albany/LCM code.

Coupling is concurrent (two-way).

Ease of implementation into existing massively-parallel HPC ik.)uca.

Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

"Plug-and-play" framework: simplifies task of meshing complex geometries!

Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

Ability to use different solvers/time-integrators in different regions.

Coupling does not introduce nonphysical artifacts.

10 Theoretical convergence properties/guarantees ( for quasistatics).
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Ongoing/Future Work

■ Development of theory for dynamic alternating Schwarz formulation.

■ Journal article on our dynamic Schwarz formulation is in preparation.

■ Extension of Albany/LCM dynamic Schwarz implementation to allow for

different time steps in different subdomains.

■ Application of dynamic Schwarz for problems and test cases of
interest to production.

■ Implementation of alternating Schwarz method for concurrent

multiscale coupling in Sandia production codes (Sierra Solid
Mechanics), comparison to other methods (e.g., GFEM).

■ Development of a multi-physics coupling framework based on
variational formulations and the Schwarz alternating method.

Sandia
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sipative maierial models in the finite deformation regime
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dependent resulis due ro the 10S.R of ellipticity ar she onset

of strain localization p L I. To circumvent the loss of mate-



Appendix. Previous Work
Compul Mech (20 L4) 54:E133-S2O
DO( 0.]11::07701306-.0-14- 304-0

ORLGINAL PAPER

A multiscale overlapped coupling formulation
for large-deformation strain localization

%ValChing Sun • Alejandro Moia

Reccivak 1 k# September 2013 Accerried: 7 April z41.4 f PubListicd on! irm: 3 May 2014
C SpririgerNertag Hell in Heidirl 2CF1

Abstract We generalize the rnuniscale overlappecl domain

framcvvork to couple multiple ratc-indcpendent Ntandard dis-
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woek of a three-field energy functional_ We also

establish inf-sup tests to examine the numerical stability
issaies dna wise from enforcing weak compatibility in tho

three-fbeld formulation. We also devise a new block solver

fiN coupling pl-ohlem and ciernoriFtrate the per-
formanceof the formulation with one-dimensional nu merical

e-xampks. These simulations indicate that it is sufficient to
introduce a. localization limiter in a confined region of inter-

cast to regularize the partial dirfereniiaL equation if loss of
occurs_

Three-field m u ltisca le
coupling formulation
with compatibility

enforced weakly using
Lagrange multipliers.

strain localization may lead to the eventual failure of materi-

als, this pliencirnenon is of signi 4ca.ni imppriance to modcrn
engineering nprications.

Thc objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations far

inclastic maierials that are pronc io sirain localization. Sin=
if is. nor feasible so conduct sub-scale s.imularions. rngin-o-

scopic problems, we use thc domain coupling method such
that computational EVKallreeN he efficiently allocated rE3

regions of interest [1 4,23, 24,30]. To. the best of our knowl-

e,clgc, this is Om finit work foc wing cla the arPrrikiin
coupling method to model strain loc-alization in inelastic

materials undergoing large deformation.
Nevertheless., modeling strain loc-alization with the con-

ventional finite element method may lewd to spurious mesh-
dependent reside; due to the loss of ellipticity ar she onset

of strain localization p L I. To circumvent the loss of mate-
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Abstract We generalize the muniscale overlapped domain
framevvork to coupk multiple rate-independent Ntandard dis-
sipative maierial models in the finite deformation regime
across diffcrcnt length scales. We show that a fu.11y cou-
pled multiscale incremental boundary-value problem can be
recast as the staiionary point thai optimizes the pariitioned
increnlerital Wnek a three-field energy functional_ We ako
establish inf-sup tests to examine the numerical stability
issaies itna wise from enforcing weak comparihility in tho
three-field formulation. We also devise a new block solver
fiN domath coupling problem and ciernoristrate the per-
formanceof the formulation with one.-dimen.sional nu nierical
e-xampks. These simulations indicate that it is sufficient to
introduce a. localization limiter in a confined region of inter-
cast to regularize the partial differential. equation if loss of
ellipticity occurs_

Method works well, but is
difficult to implement into

existing codes.

strain localization may le-ad to the eventual failure of materi-
als, this phenomenon is of significant impcirianee to modcrn
engineering applications.

Thc objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations far
inclastic maicrials that are pronc iosirain localization. Si ncc
if is nor feasible co conduct sub-scale s.i mulations. man-0-
scopic problems, we use thc domain coupling method such
'aka opirri.pulaliurtal EVSIMUCEN C:ark he efficiently allocated rE3
regions of interest [1 4,23, 24..30]I. To the best of our knowl-
e,clge, this is die finit work focusing cla thc arPrrikiin
coupling method to model strain loc-alization in inelastic
materials undergoing large deformation.

Nevertheless., modeling strain loc-alization with the con-
ventional finite element method may lead to spurious rnesh-
dependent resulis due to the IORR of ellipticity ar she onset
of strain localization p L N. To circumvent the loss of mate-



Appendix. Full Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, each converged to a tight tolerance F.(x-machine)•
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1: x(EP XL1) in 521, x,1) x(X/(,1)) on ac,,Q1, x(01) x,(31) on 1'1
2: 4) x(B2) in 522, x(b2) x(x (2).

) on apQ2, x(02) <- X ,(32) on r2
3: repeat

(1) (14: y +- XB
)

5: x(01) <- P124) + Ql2x(b2) Gi2æ (02)
6: repeat

7: ~xBl)
_K (Aii3 (b1) ; x(01)) \R(,:)(æ(E]t.); æ so)

8: xSV xBl)+ AxT
9: until IlAx(Eli)11/11X

10: y(2) <- x(2) 
T11 < Emachine

11: X(02) •<- P21X(L13") (421X(bi) G21X(01)
12: repeat

A „.(2) re-(2) „„(2).
13: -̀1" B k ABY A''B a" b 1'4'0 \-"A k""B la"b

14: B B
æ (2) æ (2) + Ax (2)

15: until IlA4)11/114)H < Emachine
1/2

16: until [(11Y(1)- x()11/11xT11)2+ (11y(2) -x(j)11/14)11)2]

i> initialize for Qi

t> initialize for Q2
1> Schwarz loop

t> for convergence check

project from Q2 to ri
t> Newton loop for Qi

t> linear system

t> tight tolerance

t> for convergence check

project from Q1 to r2
[;. Newton loop for Q2

t> linear system

0. tight tolerance

< 6machine L> tight tolerance



Appendix. Inexact Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, with Newton step converged to a loose tolerance.

1: x(IV +- X(B1) in Qi, a7b1) 4— x(X/(,1)) on 8cp521, x(01) 4— X(01) on F1

2: 4) t— X (B2) in S22, X,2) <— X (X1(,2)) Orl 8sos22, X,32) 4— ,(32) on F2
3: repeat

4: y(l) 4— x(1)B
5: X(01) {— P1242) + C 112X 2) + G 12X(0)
6: repeat

7: A4) 4— —K(All (X T ; X 1) ; X(01) )\R(,) (4) ; X,1) ; X (01) )

8: xB
0.) 

4— xB 
0.) 
+ Ll 

A 
xB 
0)

9: until 11,LXSPII/llœ(E13)11 6

10: y(2) E— X (2)B
11: XT 4— P21xB1) + Q2104,1) + G2iX,(31)
12: repeat

13: 
A4) _K(A21(x

82)
; x(b2); x(02))\R(ip(x(IV; x(b2); x(02))

14: 4) <— X(IP + Ax (B2)

15: until 11A4)11/1Ix )II < 6
(1\ \ 2 / ‘ „ 1/2

16: until [(11Y(i) — 4)11/11eL j11) + Vy(2) — X SPI1/11X(,4)11)- _1 < Emachine
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i> initialize for Q1

> initialize for Q2
t> Schwarz loop

> for convergence check

i> project from Q2 to F1
r> Newton loop for C21

t> linear system

t> loose tolerance, e.g. c E [10-4,10-1]

t> for convergence check

> project from C21 to r2
> Newton loop for Q2
> solve linear system

> loose tolerance, e.g. e E [10-4, 10-1]

> tight tolerance

la



Appendix. Monolithic Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
elimination of Schwarz boundary DOFs, and tight convergence tolerance.
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1: B —(1) • v(1) ;11 Q19 b x(1) <— x()C-1)) on 8wl2i,4.; B 

2: x(EV X132) in S22, X,2) X(X )2) ) on aps22,
3: repeat

4:
0x(131) (-K(L K(A131/11

Aæ 2) K(2) H21AO --

5: X(1) <— X(1) + Ax(1)

6: æ P2) X r2) Aæj3(2)B B B

7: until [(11AacT 11/114-)11) 2 + (IA4)11/14)02] 1/2 € machine

K(Al2H-12
K(A21)3 K(A23H22)

• initialize for Qi

• initialize for S/2
C. Newton-Schwarz loop

l> linear system

t> tight tolerance

Advantages:

• By-passes Schwarz loop.

Disadvantages:

• Off-diagonal coupling terms —> block linear solver is needed.



Appendix. Modified Schwarz Method
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Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

1: 4) Xj() in Q1, 4-) x(X/(,1)) on apQl, x(01) 4— Xi(31) on 1-'1
2: 4) 4— )42) in Q2, X 2) E— XPC 2)) on 8,Q2, x(02) x,(,2) on r2
3: repeat

4: x(431) 4— P124) + Qi2x62) G12x(02)
AxT —.K11)3(4); x11); x(01)) \R(jp (4); 4.); x(01))

xB xB geB(1) (1) A (1)

x(02) P214) + Q21X61) G21X(01)
A4) _K(A2j)3 (Er ; )2) ; x(0)) \ R(ip (x(ip ; x)2); x(02))

5:

6:

7:

8:
(2) (2) A (29: xB xB LAxB)

21 1/2
10: until [(11A4)11/114)11)2 (11Ax(LP11/11x;:)11) Emachine

Advantages:

• By-passes Schwarz loop.
• No diagonal coupling (conventional linear

solver can be used in each subdomain).

initialize for 01

t> initialize for E-22
Newton-Schwarz loop

project from 02 to Fi

linear system

project from C21 to F2

linear system

t> tight tolerance

Least-intrusive variant: by-passes Schwarz
iteration, no need for block solver.



Appendix. Convergence Proof

2 Formulation or the.hharr Alternating Method
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Appendix. Foulk's Singular Bar
. 1D proof of concept problem:

. 1D bar with area proportional to square root of length.

• Strong singularity on left end of bar.

• Simple hyperelestic material model with no damage.

• MATLAB implementation.

u(0) = 0

Sandia
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101k

MATLAB
The longuoge of TechnKal Computng

A(X) = Ao -VXIL u(L) = A

L

X

Problem goals:

• Explore viability of 4 variants of the Schwarz alternating method.

• Test convergence and compare with literature (Evans, 1986).

. Expect faster convergence in fewer iterations with increased overlap.



Appendix. Singular Bar and Schwarz VariagAL

`11',

1.0

0.8

0.2

10°

10-2

10-8
0

th-10

10-12

io-14

— Domain /2

Subdomain D1

Subdomain /22

0.2 0.4 0.6

Position

Full Schwarz

Modified Schwarz

Inexact Schwarz

Monolithic Schwarz

MATLAB
The Language of Technical Cornpahng

103
64 elements

128 elements

256 elements

512 elements

1024 elements

2048 elements

4096 elements

8192 elements

100
o

H

103

102

10-1

10-16  10-2
10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 103 104 105 106 107

Error e(n)

20 40 60 80
Size of Overlap Region [Vo]

41-0

Full Schwarz

Modified Schwarz

Inexact Schwarz

Monolithic Schwarz

Number of Elements per Subdomain

100
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Appendix. Notched Cylinder: Nonconforrrinia,,

HEX-HEX Coupling

(b)

Absolute residual tolerance
u3 relative error

C21 C22

1.0 x 10-8 1.31 x 10-3 4.45 x 10-4
1.0 x 10-12 1.30 x 10-3 4.43 x 10-4
1.0 x 10-14 1.30 x 10-3 4.43 x 10-4
2.5 x 10-18 1.30 x 10-3 4.43 x 10-4

u3 error
.1.446e-05

1 .2e-5

-79e-6

I6e-6

3e-6

0.000e+00



Appendix. Multiscale Modeling of
Localization

Region of

localization

(necking)

014,4 101111-.1 Mil

Region of localization (fracture)
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Strain localization can cause localized necking (left)
and ultimately fracture (above).

Goals: 

• Connect physical length scales to engineering scale
models.

• Investigate importance of microstructural

• Develop bridging technologies for spatial multiscale/
multiphysics.



Appendix. Parallelization via DTK: Weak

Scaling on Cubes Problem

1 Processor,

2.5*103 DOF / proc

8 Processors,

2.1*103 DOF / proc

64 Processors,

1.9*103 DOF / proc

104

E 3
1 0

o

102
10° 101

Number of Processors
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102



Appendix. Parallelization via DTK: Strong

Scaling on Cubes Problem
Small problem (2.5*103 DOFs)

103

E 2
j= 1 0

o

101
10°

0 Simulation Times
o Linear Scaling

8

107 DOF/processor

0

101
Number of Processors

410.1440Z...

4.Z.Z.Z.M.Z.Z.* 100.41.

AP- ...I.... II.

•

102

Medium problem (1.7*104 DOFs)
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106
0 Simulation Times
 Linear Scaling

104

i=

0 103

176 DOF/processor

102
101 1 0

2100
Number of Processors

Large problem (1.6*105 DOFs)

106

E 
1 0
5

TO
0

104
10° 101 102

Number of Processors

5124 DOF/processor 0



Appendix. Rubiks Cube Problem

anisotropic
crystal elasticity

isotropic
elasticity

Two distinct bodies, the component

scale and the microstructural scale,

are coupled iteratively with

alternating Schwarz

AreaIMF
A

-41141111PAIr A

Al in .4170.0420r
overlap 4111111.110r

..4"4
7

0,0
It. 100
Assn 
*-0-11-0.1•40-0itemwa. 4.04,4P0-0". **4 KIP to via- 00,0
*,
IWO"

;#0 # 0/0
W

0°"0010 ###
OW 1 $00#

411, 4PAPit ilf0

distinct
models

concurrent
coupling

plotting axial
stress
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Work by J. Foulk, D. Littlewood,

C. Battaile, H. Lim

microstructural
scale

component
scale



Appendix. Tensile Bar
Cauchy Stress 1 1

— 125.0

92,5

60.0

27,5

-5.0

Embed microstructure in

ASTM tensile geometry
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Appendix. Tensile Bar: Meso-Macroscale
Coupling

Mesoscale

SPARKS-generated

microstructure (E Abdeljawad)

cubic elastic constant : C11 = 204.6 GPa

cubic elastic constant : C12 = 137.7 GPa

cubic elastic constant : C44 = 126.2 GPa

reference shear rate : i/o = 1.0 1/s

rate sensitivity factor : m= 20

hardening rate parameter : go = 2.0 x 104 1/s

initial hardness : go = 90 MPa

saturation hardness : g, = 202 MPa

saturation exponent : w = 0.01

Fix microstructure, investigate ensembles

0.6

0.4

0.2

0.0

—0.2

—0.4

—0.6

0 
60

• •
• • • •
• •
• • • •

—0.6 —0.6

• • .•

o'4 
0
'
6

0.20.0 
0.2

0.4 x

151 axial vectors

from 3 of the 10

ensembles of

random rotations

(blue, green, red)

Macroscale
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■ Load microstructural ensembles in uniaxial stress
■ Fit flow curves with a macroscale J2 plasticity model

350

300

250

(r)(r)

200

150

eeee ••••••••eeeeeee

• •eeeeee 01,• • 4-

Young's modulus : E = 195.0 GPa

Poission's ratio : v = 0.3-

yield stress : ao = 144 MPa

hardening modulus : H = 300 MPa-

saturation modulus : S = 170 MPa

saturation exponent : a = 190_

• • 10 CP ensembles
— J2 fit

113
0
.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

equivalent plastic strain(mm/mm)

ay = (To Hcp + S(1 — e—"€P)



Appendix. Tensile Bar: Results

0.01005

0.01000

0.00990

Reduction in cross-sectional
area over time

time

0.00985 
0.10 —0.05 0.00

Location [min]
0.05 0.10

F 1 1
1.035

1.025

1.014

1 1.003

Santla
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F 1 1
t1.035
=1.025

1.014

.003



Appendix. Schwarz Alternating Method
for Dynamics
• In the literature the Schwarz method is applied to dynamics by using space-time

discretizations.

• This was deemed unfeasible given the design of our current codes and size of
simulations.

Ti

Time

h1 h2

T2

Space

Overlapping non-matching meshes and time steps in dynamics.
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Appendix. A Schwarz-like Time Integrator
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• We developed an extension of Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.

• Can use different integrators with different time steps within each domain.

• 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

1

1 Controller time stepper
Time integrator for ,(21

  Time integrator for ,(22



Appendix. Dynamic Singular Bar Sandia
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• Inelasticity masks problems by introducing energy dissipation.

• Schwarz does not introduce numerical artifacts.

• Can couple domains with different time integration schemes (Explicit-Implicit below).

0.2 0.4 0.6
Position

0.8 1 0

0.2 0.4 0.6
Position

0.8 1 0

0.2 0.4 0.6
Position

0.8 1 0

1.5

1.0

0
0

o3
iv 0.0

8

—0.5 -

0.5

—1.0

Position
107

aw
i#4040ftlit "ii "" A 411) M. AL.

;VIIPAVM

Y

00 0.2 0.4 0.6
Position
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Appendix. Elastic Wave Propagation
Some Performance Results
5

Q.

cf)
a) 4.5
E

o
t-73
a)
- 3.5

cn

z 2.5
rn

20 40 60

Size of Overlap Region [°/0]

80 100

1 o°

10-

fV

C.

,1-) 10-1
CD

co
CD

10-15
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- - - - 1st timestep
2nd timestep
10th timestep
1000th timestep
last timestep

 slope = -1

102

1

0

o 15 10
-10
 10

-5

Relative error f(n)

• Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The

method does not converge for 0% overlap. lf the overlap is 100% then the single-domain

solution is recovered for each of the subdomains.

• Right figure shows linear convergence rate of dynamic Schwarz implementation (for small

overlap fraction of 0.2%).



Appendix. Torsion

• Nonlinear elastic bar (Neohookean material model)
subjected to a high degree of torsion.

• The domain is.Q, = (-0.025,0.025) x
(-0.025,0.025) x (-0.5,0.5).

• We evaluate dynamic Schwarz with 2 subdomains:
no = (-0.025,0.025) x (-0.025,0.025) x
(-0.5,0.25), .0,1 = (-0.025,0.025) x
(-0.025,0.025) x (-0.25,0.5).

• Time-discretizations: Newmark-Beta (implicit,
explicit) with same At.

• Meshes: hexes, composite tet 10s.

Sandia
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Appendix. Torsion

Conformal Hex + Hex Coupling

Schwarz and single-domain results
agree to almost machine-precision!

• Each subdomain discretized using uniform hex mesh with Axi =
0.01, and advanced in time using implicit Newmark-Beta scheme
with At =le-6.

• Results compared to single-domain solution on mesh conformal with
Schwarz domain meshes.

Displacement relative errors at final time (T=0.002)

SZo

f21

Velocity relative errors at final time (T=0.002)

00 004 '404
Or ,41400014. .400.4 -

SOO 0000 O  41004

000 -000000[001000,00.0,

01100.',00000040010
-000,r , 

b. '00 ' 0410144 •
0, *00 440100

Idsol rel error
2.471e-13

11.8463e-13

7 1.2308e-13

I6.1542e-14

9.502e-16

kid relme_12

4.6624e-12
..=

-.:
=3.1082e-12

1.5541e-12

1.236e-14
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Appendix. Torsion
Hex + Composite Tet 10 Coupling

• Coupling of composite tet lOs + explicit Newmark with consistent
mass in no with hexes + implicit Newmark in n,.

• Reference solution is computed on fine hex mesh + implicit
Newmark n„f

No dynamic
artifacts!

Tirne 0.000000

4v

Relative error <1% and
does not grow in time!

0.18

0.
0.16

0.14

0.12

0.1

.1,'; 0.08

0.06

0.04

0.02 -

50 100 150
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Appendix. Torsion
Some Performance Results
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• Convergence behavior of the dynamic Schwarz algorithm for the torsion problem for small

overlap volume fraction (2%) in which each subdomain is discretized using a hexahedral

mesh. The plot shows that a linear convergence rate is achieved.



Appendix. Bolted Joint Problem
y-displacement
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Appendix. Bolted Joint Problem
z-displacement
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