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Motivation for Concurrent Multiscale ) .,
Coupling

= Large scale structural failure frequently
originates from small scale phenomena such
as defects, microcracks, inhomogeneities and
more, which grow quickly in unstable manner.

= Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks, Roof failure of Boeing 737 aircraft due to
etc.) and large scale (vibration, impact, high fatigue cracks. From imechanica.org
loads and other perturbations).

Concurrent multiscale methods are
essential for understanding and prediction
of behavior of engineering systems when a .

g } Surface flaw in pressure
small scale failure determines the vessel* intetacks with

performance of the entire system. microstructure, which may
or may not lead to failure.




Requirements for Multiscale Coupling Method

o Coupling is concurrent (two-way).
o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries!

» Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

» Ability to use different solvers/time-integrators in different regions.

o Coupling does not introduce
nonphysical artifacts.

o Theoretical convergence
properties/guarantees.




Schwarz Alternating Method for Domain ()&=
Decomposition

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843 — 1921)

. Basic Schwarz Algorithm
Initialize:

= Solve PDE by any method on 2, w/ initial guess for Dirichlet BCs on 7.

Iterate until convergence:

= Solve PDE by any method (can be different than for £2,) on 2, w/
Dirichlet BCs on 7 that are the values just obtained for (2,.

= Solve PDE by any method (can be different than for €2)) on Q, w/
Dirichlet BCs on /7 that are the values just obtained for (2,.
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Schwarz Alternating Method for Domain
Decomposition

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843 — 1921)

Basic Schwarz Algorithm

Initialize:

= Solve PDE by any method on 2, w/ initial guess for Dirichlet BCs on 7.

Iterate until Convergence: ReqUirementfor ConvergenCE' Ql n QZ #: @

Dirichlet BCs on 7 that are the values just obtained for £2,.

Dirichlet BCs on /7 that are the values just obtained for (2,.

= Solve PDE by any method (can be different than for €2,) on 22, w/

0 = Solve PDE by any method (can be different than for €2)) on Q, w/

iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for
— solving multiscale partial differential equations (PDEs).

Schwarz alternating method most commonly used as a preconditioner for Krylov
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Schwarz Alternating Method for Multiscale, s
Coupling in Quasistatics

@™ « arg min ®;[¢] in Q; > solve in ;
pES;

n<n+l
until converged

1: 0@ «idx in Q > initialize to zero displacement or a better guess in {25
2:n+1

3: repeat > Schwarz loop
4: @™ « x on 0pS2; > Dirichlet BC for §;
5: (™ P, [cp("_l)] onT; 0, > Schwarz BC for €2;
6:

f

8:

Advantages:

Conceptually very simple.

Allows the coupling of regions with different non-conforming meshes, different element
types, and different levels of refinement.

Information is exchanged among two or more regions, making coupling concurrent.
Different solvers can be used for the different regions.

Different material models can be coupled if they are compatible in the overlap region.
Simplifies the task of meshing complex geometries for the different scales.



Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear
elasticity in variational form and proved method’s
convergence by proposing a convergent sequence of
energy functionals.

= S. G. Mikhlin (1951): proved convergence of Schwarz
method for general linear elliptic PDEs.

= A. Mota, |. Tezaur, C. Alleman (2017)*: derived a proof of
convergence of the alternating Schwarz method for the
finite deformation quasi-static nonlinear PDEs (with
energy functional @[] defined below), and determined a
geometric convergence rate for the finite deformation
guasi-static problem.

®lp] = [, W(F,Z,T)dV - [, B-(pdV—faTBT~(pdS
V-P+B=0

A. Mota, |. Tezaur, C. Alleman

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Four Variants* of Schwarz

i

1z z(B‘) — Xg) inQy, zﬁ‘) — x(X;l)) on 91, mg) - Xgl) onI'y » initialize for

2 m(EZ) — X‘(;) in Qa, a:,(,z) — x(X;z)) on 92, mf:) - Xf:) on Iy © initialize for 22

3: repeat > Schwarz loop ) . ) ) ) ) P —

4 y 1—:1:(.3) > for convergence check 2y« Xp'in, @y’ — x(X, )0“8@91.mﬁ ‘_X,s onI'y b initialize for €21
2 2) . 2 2 2 2 Lani

5 -’Bg) - P12E(2) i Qumf,z) i Gmwl(:) & project from Q3 to I'y 2: zg) - sz) in Qg, m,(, ) x(X,E ) on 8pQa, mfg ) Xé )onTy > initialize for {22

6:  repeat > Newton loop for 21 3 "‘P"’(’l) - - - > Newton-Schwarz loop

7. A:c(Bl) - —Kg;(mg);zél) (l))\Rm(z“) f,l);fﬂg)) > linear system 4 zy’ « Poxp’ + Quz,” + Gy > project from Q2 to I'y

8: z{) « 2 4+ Az s: Ael) « —K D z) mg))\qul)(mg);mf,l);zg)) b linear system

9 until [|azW||/1125]] < emactine > tight tolerance 6 a2 +az)

10 y@ « a:(sz) o for convergence check 7 2). P-nzg) + Qmmgl) + Gzlzﬂl b project from Q3 to I'y

2 ( .

1 2« Puzl) + Qual) + Guaf) > project from Q; to Ty 8 822 « K2 @P;a?;a\RY @22 b Mg ayitein

12 repeat > Newton loop for 22 9 @) @), Ap®

13: 222 K@ (P mgz))\ﬂf)(zg);m,(,z);mf)) > linear system : @p X+ LBy ) -

2@ 2@+ 02 10: unti [(||A:c“’||/nz“’||) + (1P 11/1=$11) ] < Comtins b tight tolerance

15: until ||Az(82)||/||a:g)l| < €machine D tight tolerance

2 1/2
16: until [(||y<1> —2PeP1) + (@ - =2 1/1=1) ] < machine b tight tolerance

Full Schwarz Modified Schwarz

12l X(l) inQ, @l « x(X(l))un6¢Ql m(l) (—X‘(;) onI'y > initialize for 21

2:x B ) XI(;) in Qg, zl(,z) — X(X|§2)) on dpfla, T 532) - Xt(f) onI'y b initialize for Q2

3: repeat > Schwarz loop

4 y® 2 b for convergence check @ (1) 4_ X(l) in Q. z(l) ‘_ X(Xél)) on Bpfy, > initialize for 2y

8 mg “— sz(2) 50 Qum?) 4 Glzzgz) b project from Q3 to 'y 2 2@ X(z) in s, z(z) o x(x(z)) on 80, > initialize for Q2

el 1) (1), 0. 2\ gD (D). (1), 1) P e, 3 repeat ’ > Newton-Schwarz loop

% Axy’ — —Kp(ap’ iz, s25 )\Ry (®p’iay 'i257) > linear system Agld K(Al; +K5‘1}3Hu K,(:;Hw _RW )

8: 2 « 2 + Aald) 4 ~ B+ KOH. KD L KD \ Rﬁ) > linear system
! (1) (1) 4 st T At ap T B pH22 —Iy

9:  until ||Am I/lleg’ll <€ b loose tolerance, e.g. € € [10~4,107!] 5 20 20 4 Az

10 y@ :c(z) & for convergence check 6. mg) & = &

1 =P« P,la:(,,l’ +Quz) + Gnzl) > project from 3 to Iy B < ®5 +O%p 211/2

122 repeat STl o e o o o o > Newton loop for 2, 7: until [( 1Az /1P| ) ( |Az(2)||/||:l:(2)||) ] L Crnnitiin > tight tolerance

134 Am%) F—K‘A;(z(s);zf, );:g))\qu)(z%);z,(, );z(ﬂ)) > solve linear system

14: mg) — z(z) + Az(z)

15:  until ||Az(2)||/||m(2)|| <e > loose tolerance, e.g. € € [10~4,101]

2 271/2
16: unti [(Ilu‘” =311/11=511) +(||u<2>—m‘“’n/um‘”u)] < e b tight tolerance

Inexact Schwarz Monolithic Schwarz

Y e—————— . asaaa———"
*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.




Four Variants* of Schwarz

h

Least-intrusive variant: by-passes Schwarz iteration,

no need for block solver.

1z z ) X(l) inQy, z( <« x(X;l))on A, mg‘) - Xg‘) onI'y
2: mB X‘(;) in Qg, a:,(,z) — x(X;z)) on 92, mf:) — XI-EJ?) on 'y
3: repeat

1
. y(i) . w(B) 2 2 2
5. al) Puzl) + Qual) + Glzw,(g)
6: repeat
7 aad « ~KD @D 2D zONRP @0 2(D; 2 ()
8 mg) (—zg) +Azg)
9 until [|AH]/l125 | < emctine

10:  y@ a2

11: mf:) — lew +Q21IB (1) + Gglm

12 repeat
13: 82 « K@ @32 aPN\RY @22 2()
14: mg) — zg) + Azg)

150 until [|A23)]1/]125]] < emchine

2 1/2
16: until [(uu“)—wS’nnlmS’u) +(ly® - =R 1/11=$) )] £ Sunites

> initialize for

> initialize for Q23

> Schwarz loop

> for convergence check

> project from Q2 to I'y
> Newton loop for §21

> linear system

> tight tolerance
> for convergence check

> project from € to I'y
> Newton loop for 22
> linear system

> tight tolerance

D> tight tolerance

1
2:
3
4
5
6:
7
8
9
0:

GB
1!

X(l)mﬂlm (-x(X(l))ona‘le m <—X(1)onI‘1

B ) 4= Xg) in Qg, mgz) — x(X,Ez)) on Gpfla, @ ’(32) — Xéz) onTIy

repeat
mfgl) « Pz + Quz(? +G121‘f52)

1
Aa:g)

e KO @D;2®;2ON\RD @D;20; 20)

mg) %= zg) ;2 Am(Bl)

Amg) — —Kffz, (mg); x,

@x

D szw(Bl) o Qmm,(,” + Gzlz,(gl)
@, 20\ RD (2@, 2; D)

g) = zg) * Az(z)

' 2 211/2
10: until [(||A:c“’||/nz“’u) +(||Aw§§’||/||z‘3’n)] < Comtins

> initialize for 21
> initialize for Qo
> Newton-Schwarz loop
> project from 23 to I'y

> linear system

> project from 2 to I'y

o linear system

> tight tolerance

Full Schwarz

Modified Schwarz

1: 4—X(1) inQ, @ 4—x(X(1))un6¢Ql m(l) (—X‘(;) onTl'y
2:x XI(;) in Qg, :cl(,z) — X(X|§2)) on S, T fgz) - X?) onI'y
3 upent
4y« :z:g)
5 mg) — Puzm + Quzf,z) + Gnmgz)
6: repeat
7: 2zl  —KQ @2 2N\RP 5 2D 2())
8: (1) — z“) + Am(Bl)
o wnth [0zD]lIa) <
100 y® 2@
11: :tfs — lez(Bl) +Q21:1:,(,1) + Gglzg)
12 repeat
13: 222  — KD @?;2®;aP)\RP (22 2)
14 (2) — z(z) + Az(g)
15:  until ||Az"’||/nm"’|| <e

1/2
16 wnt (19 — 2 1/11)” + (1 — 2 1/151)’] T

© initialize for 21

p initialize for Q2

> Schwarz loop

b for convergence check

> project from 23 to I'y
> Newton loop for 21
> linear system

> loose tolerance, e.g. € € [1074,107]
> for convergence check

> project from €2 to I'y
> Newton loop for 22
> solve linear system

> loose tolerance, e.g. € € [1074,107]

> tight tolerance

N @

=

(l)

{

X(l) in Qy, z( “— x(X;l))ona‘,,Ql.
) ¢ Xm in Qg, :1:(2) — x(X,SZ)) on 92,

peal

K

se] K\ + K\ Hy \
K+ K ) |-

Amé) KEﬁ;HZl

a:g) «— zg) + A:r:g)

x

(82) — :1:(2) +* Az(z)

211/2
¢ until [(lAm“’n/nm“’) (uAm‘z’n/nw‘”n)] < Comcti

__R(l)

b

R

)

» initialize for £2;
> initialize for Q2o
> Newton-Schwarz loop

© linear system

> tight tolerance

Inexact Schwarz

Monolithic Schwarz

e, e, —————————————— —— — =SSR

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics",

CMAME 319 (2017), 19-51.



Four Variants® of Schwarz

Most performant method: monotonic convergence,
theoretical convergence guarantee.
1: m(l) o X(l) inQy, @ ( . x(x(l)) on 9y, @ 591) 4~ xé‘) onT b initialize for €21
2 x(’) in Q2,22 (X)) on0pa, 2 XV on Ty > initialize for Q5
4 npeat > Schwarz loop . (1) (1) ) ) SN
4 Y e b for convergence check 13 :t — Xp'inQy,xy + x(X, ) on O, :z: — X onI'y > initialize for €y
2 2, 2 2 2 s sie e
5 m‘(;) - sz(z) s sza) +G12z(2) > project from Q3 to 'y 2: :cB & X‘(B) in Qg2, zf, ) x(Xg )) on A2, m; ) Xg ) on Ty » initialize for Q2
6:  repeat > Newton loop for €21 3 I"’-l’e“‘('l) - - & > Newton-Schwarz loop
7: 2z « —K) (@2l (1))\R(1)(m(1) z"; zg)) b linear system 4 xp’ « Ppxp + le:c + Guw b project from 25 to T'y
8 (1) - 1.(1) +Aa:(” 5 Awg) K(l) (:c(‘) (l))\R(l)(z(l);m,()l);a:f;)) © linear system
9:  until ||Azg)||/||m<”|| & Gt b tight tolerance 6 z«z§ + Amg)
10 y@ zg) b for convergence check 7 2 + Pglz“) EW sz(l) o Gglmgl) b project from €24 to I'y
1: 2P Pnzl) + Qual’ + Gual) > project from 1 to T’z 8: Amm e KD @2;2?;eP)\RD =2 2(; () I TI—
12 repeat > Newton loop for 23 o ) @ | Ap®
13: 2a? « K@ @2 aP)\RY @322 > linear system B B A a 211/2
14: 2@ « @ + 2z? 10: until [(qu“)n/nzg’u) & (||Am§§’||/1|m(,§)||) ] £ i > tight tolerance
15:  until ||Aa:")||/||z‘g’|| < €mactine > tight tolerance
2 1/2
t6: wnt [ (1 = /1) + (1w — 2 1/1121) " < e > tght tolerance
Full Schwarz Modified Schwarz
I x 4— XPin () « x(X{M) on 801, 25 X5 onTy > initialize for Q3
2@ xg) inQy, mg” —x(XP)on B, (’) «XP onry > initialize for Q2
3: repeat - > Schwarz loop
% 1
4 yili —a : N - o for .convcrgcnce check 1: o X(l) inQy, 2V « x(xél)) on 901, > initialize for Q;
5 mp Pz + Qual? + G ® project from €23 to I'y 2 2@ X('Z) in g, m(z) —x(X®) on 8,00, > initialize for Q2
bi hepest o Newtot loop for {1, 3 repeat > Newton-Schwarz loop
7 Axtd K(l)(m(l) (1))\R(1)(z(1) (l);m(l)) © linear system ) 1) (1) 1) (1)
(1)B (1) (1) Py 808 4 Az Kp+K,;Hn K, ;Hiz -R 4
8: ¢p’ +xp’ +Axpg : Al K(g)H K L KOH —Ré) b linear system
(1) ) —4 10-1 B At AB Ap-122 A
9: until [|Azg’||/||leg’|| < € b loose tolerance, e.g. € € [1074,1071] 5 2D 20 4 Az
10: Y@z & for convergence check 6j mg) = & M Amg)
11: zfq!) « Py} +Qazl" +szg) b project o T 4 B g 5 . "
120 repeat - ) __— > Newton loop for Q2 7: until [(umg)u/nzg)u) + (la=@ 11121 ] < cainctlin b tight tolerance
13: A:c( AP K( ) (z( ), wff);m(ﬁ ))\RS‘))(G:%);G:E7 );a:f:)) > solve linear system
14: :cg) 2(2) + Aa:(z)
15  until ]|A1(2)||/||z(2)|] <e b loose tolerance, e.g. € € [104,10~1]
2 2 1/2
16: until [(nu(l) —=P1/ePN) + (v -2 1/1=E1) ] < mctine b tight tolerance
Inexact Schwarz Monolithic Schwarz

—
*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Implementation within Albany Code

The proposed quasistatic alternating Schwarz method is
implemented within the LCM project in Sandia’s open-source
parallel, C++, multi-physics, finite element code, Albany.

=  Component-based design for rapid development of https://github.com/gahansen/Albany
capabilities.

= Contains a wide variety of constitutive models.

= Extensive use of libraries from the open-source Trilinos
project.

= Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

= Use of the Sacado package for automatic
differentiation.

= Use of Teko package for block preconditioning.

= Parallel implementation of Schwarz alternating method

uses the Data Transfer Kit (DTK). https://github.com/ORNL-

) . CEES/DataTransferKit
= All software available on GitHub.
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I

Quasistatic Example #1: Cuboid Problem T

* Coupling of two cuboids with square base (above).
* Neohookean-type material model.

Schwarz Iteration




Cuboid Problem: Convergence with )
Overlap & Refinement

= (h1,hg) = (L, 1)

WL s ) =1

Below: Convergence of the cuboid e il
problem for different mesh sizes vl

and fixed overlap volume fraction. L~ L E;j;j;
The Schwarz alternating method o3 oo ()= (L)

converges linearly. . e W ED

Overlap Volume Fraction

Above: Convergence factor u as a
function of overlap volume and
different mesh. There is faster

linear convergence with increasing
overlap volume fraction.

1075

— — — — — — ~— — — ~—

Wl W= = 00— = RO 00l = ROl

Increment Norm ||[Ay™+D)||
T T A T T CT R CTTN

10

STYIR (S S N T N N N N S SO N
1075 102 10-1 10-10 109 105 107 10-° 10-° 10-* 10 102 101 10°
Increment Norm ||Ay™)||




Cuboid Problem: Schwarz Error

Subdomain ws relative error o33 relative error

O 1.24 x 1074 2.31x 10713 ,m
Qo 7.30 x 107 1° 3.06 x 10712 T\




Quasistatic Example #2: Notched Cylinder

128

e
32
Qo
16
. T ......... s
F2 E8 8 N
Fz \’1'6
N 18
16
Qo
32
e

64

(a) Schematic

(b) Entire Domain (2 (c) Fine Region 24 (d) Coarse Region (22

Notched cylinder that is stretched along its axial direction.
Domain decomposed into two subdomains.
Neohookean-type material model.




Notched Cylinder: Conformal HEX-HEX Coupling

6.400e-03
0.006

+=—0.005

0.003

T

0.002

0.000e+00

(@) (€) Qpes

us relative error

Absolute residual tolerance 91 Qs
1.0 x 1074 7.60 x 1073 3.20 x 1073
1.0 x 10~8 3.10 x 107° 1.71 x 107°
1.0x 10~2 1.34 x 1072 5.10 x 10710
1.0 x 10714 1.23 x 107! 4.69 x 10712
25 % 1= 1.14 x 10713 8.37x 10~




Notched Cylinder: TET-HEX Coupling ) i,

= The Schwarz alternating method is capable of coupling different mesh topologies.

= The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

= The top and bottom regions, presumably of less interest, are meshed with coarser
hexahedral elements.

ey




Notched Cylinder: TET-HEX Coupling




Notched Cylinder: Conformal TET-HEX ) S
Coupling

u3 error
5.820e-05

4e-5

w
()
n

le-5

M‘mnmlmlmm

0.000e+00

(@

ug relative error
Absolute residual tolerance 04 Qs

1.0 x 107 997 x 107% 38.70x%10~°




Notched Cylinder: Coupling Different Materials

The Schwarz method is capable of coupling regions with different material models.

= Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.
= Coarse region is elastic and fine region is elasto-plastic.

= The overlap region in the first mesh is nearer the notch, where plastic behavior is

expected.
Overlap far from notch. Overlap near notch.

jiiissssanaRERRRRR
LT

Coupled regions

Coarse, elastic region

Fine, elasto-plastic region “m




Notched Cylinder: Coupling Different Materials

Need to be careful to do domain decomposition so that
material models are consistent in overlap region.

=  When the overlap region is far from the notch, no plastic deformation exists in it: the
coarse and fine regions predict the same behavior.

= When the overlap region is near the notch, plastic deformation spills onto it and the two
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.




Quasistatic Example #3: Laser Weld ) B

Laser weld specimen Single domain discretization

Cauchy_Stress_05

l 4.000e+01
30

* Problem of practical scale (~200K dofs).

» Isotropic elasticity and J2 plasticity
with linear isotropic hardening.

o
@

§

s

i

R s B2
N @ 3
S S 58
1))

Slo

* Identical parameters for weld and base
materials for proof of concept, to
become independent models.




Laser Weld: Strong Scalability of Parallel ()&=,
Schwarz with DTK

(@)}
g

w
NS}
Qi

Wall Time [hr]
2=

B
T

* Near-ideal linear speedup (64-1024 cores). L

5 64 128 256 512 1024 2048
Number of Processors

Data Transfer Kit (DTK)
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Schwarz Alternating Method for ) =

Dynamics

" |n the literature the Schwarz method
is applied to dynamics by using space-

time discretizations.

T2

o o o505 5 >
e Space

Overlapping non-matching meshes and
time steps in dynamics.



Schwarz Alternating Method for ) =

Dynamics

In the literature the Schwarz method
is applied to dynamics by using space-
time discretizations.

Pro ©: Can use non-matching meshes
and time-steps (see right figure).

Con ®: Unfeasible given the design of our
current codes and size of simulations.

T2

o o o505 5 >
— Space

Overlapping non-matching meshes and
time steps in dynamics.



Schwarz Alternating Method for Dynamic @&

: : Controller time stepper = convenient
M u Itlsca Ie CO u pl | ng checkpoint to facilitate implementation
Controller time stepper

| [

—— I Time integrator for (2,
| [

| | Time integrator for (2,

Q, | |

Step 0: Initialize i = 0 (controller time index).




Schwarz Alternating Method for Dynamic @&z

|T0

Multiscale Coupling

Controller time stepper = convenient
checkpoint to facilitate implementation
' Ty
Controller time stepper

Integrate using At;

PN

Interpolate
(O, to I}

Time integrator for 2,
from

Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ()4 solution from time T; to time T;,; using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I at times T; + nA4t;.




Schwarz Alternating Method for Dynamic ®is.
M u Itisca Ie CO u p | | ng Controller time stepper = convenient

checkpoint to facilitate implementation

I Ty | Ty
Controller time stepper
[ I
I Time integrator for 2,
Iy | Interpolate
' «~ M from Q, to'T,
Time integrator for (2,
Q,

I Integrate using At, I

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ()4 solution from time T; to time T;,; using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in £}, with
time-step 4t,, using solution in £}, interpolated to I, at times T; + n4t,.
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Schwarz Alternating Method for Dynamic
M u Itisca Ie CO u p | | ng Controller time stepper = convenient

checkpoint to facilitate implementation

1 Ty | Ty

Controller time stepper

I Time integrator for 2,

| | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ()4 solution from time T; to time T;,; using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in £}, with
time-step 4t,, using solution in £}, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, .




Schwarz Alternating Method for Dynamic @&

|T0

Multiscale Coupling

Controller time stepper = convenient
checkpoint to facilitate implementation

I Integrate using At;

PN

Q, |
|

| Ty
Controller time stepper
I
l Time integrator for 2,
Interpolate|from
Q,tol; |
| Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ()4 solution from time T; to time T;,; using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in £}, with
time-step 4t,, using solution in £}, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, .
» If unconverged, return to Step 1.




Schwarz Alternating Method for Dynamic @&

: : Controller time stepper = convenient
M U Itlsca Ie CO u pl | ng checkpoint to facilitate implementation
F | 7—.1 I TZ

Controller time stepper

I Integrate using At, 1
N|

Time integrator for 2,

T Interpolate from
0, 16T AN l
| Time integrator for (2,

o | |
I I

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ()4 solution from time T; to time T;,; using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in £}, with
time-step 4t,, using solution in £}, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, .
» If unconverged, return to Step 1.
» |If converged, seti = i+ 1 and return to Step 1.




Schwarz Alternating Method for Dynamic @&

: : Controller time stepper = convenient
M U Itsca Ie CO u pl | ng checkpoint to facilitate implementation
, I Tl I TZ

Controller time stepper

I Integrate using At, 1
N|

Time integrator for 2,

T Interpolate from
0, 16T AN l
| Time integrator for (2,

Q, | |
| !

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ()4 solution from time T; to time T;,; using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in £}, with
time-step 4t,, using solution in £}, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj, 1. Can use different integrators
» If unconverged, return to Step 1. with different time steps

» |If converged, seti = i+ 1 and return to Step 1. within each domain!




Schwarz Alternating Method for Dynamic (i) &,
Multiscale Coupling: Theory

* For quasistatics, we derived a proof of convergence of the alternating Schwarz
method for the finite deformation problem, and determined a geometric
convergence rate [(Mota, Tezaur, Alleman, CMAME, 2017) and previous talk].

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) P[@D] > P[] > -.. > O[] > B[] > ... > D[], where @ is the minimizer of D[@] over S.

(b) The sequence {cﬁ‘-”’ } defined in (39) converges to the minimizer @ of @[] in S.

(c) The Schwarz minimum values (@™ converge monotonically to the minimum value ®[p) in S starting from any
initial guess @©.

Extending these results to dynamics is work in progress.

e (Quasistatic proof extends naturally assuming conformal meshes and the same
time step is used in each Schwarz subdomain.

* Some analysis of Schwarz for evolution problems was performed in (Lions, 1988)
and may be possible to leverage.

e Our numerical results suggest theoretical analysis is possible.
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Implementation within Albany Code

The proposed dynamic alternating Schwarz method is
implemented within the LCM project in Sandia’s open-source
parallel, C++, multi-physics, finite element code, Albany.

=  Component-based design for rapid development of https://github.com/gahansen/Albany
capabilities.

= Contains a wide variety of constitutive models.

= Extensive use of libraries from the open-source Trilinos
project.

= Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

= Use of the Sacado package for automatic
differentiation.

= Use of Tempus package for time-integration*.

= Parallel implementation of Schwarz alternating method

uses the Data Transfer Kit (DTK). https://github.com/ORNL-
CEES/DataTransferKit

All software available on GitHub.

* Current dynamic Schwarz implementation in Albany requires same At in different subdomains.
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Dynamic Example #1: Elastic Wave Propagation

e Linear elastic clamped beam with Gaussian initial condition for the z
-displacement (see figures to the right and below).

* Simple problem with analytical exact solution but very stringent test
for discretization methods.

* Test Schwarz with 2 subdomains: (0, = (0,0.001) x (0.001) X
(0,0.75),Q4, = (0,0.001) x (0.001) x (0.25,1).

Clamped Beam Gaussian Z Problem

o Left: Initial condition

T=1oe ] (blue) and final solution

(red). Wave profile is

negative of initial profile

at time T =1.0e-3.

0.01

0.008

0.006

0.004 r

0.002

)
7 4
-0.002} i' | : . . .
.o | \ | Time-discretizations:
U-m Newmark-Beta (implicit,
' } explicit) with same At.
-0.008
oo ' L ' Meshes: hexes, tets
0 0.2 0.4 0.6 0.8 1

= 7 1




Elastic Wave Propagation

Time =0 Time =0
0.01 . 7 . : | 500 . ; )
Ll ' Dynamic Schwarz coupling introduces no o oy |
agus a dynamic artifacts that are pervasivein [~ %
= /A other coupling methods!
0.002 | [ 1 100}
=N § ' —
3 0 — —— L 0
N -0.002 4 -100 b .
z-velocity
SRS z-displacement v -200
-0.006 | - -300
-0.008 | g -400 ¢
-0.01 : : : ' -500
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z

Table 1: Averaged (over times + domains) relative errors in z—displacement
(blue) and z-velocity (green) for several different Schwarz couplings, 50%

.
PRI PR MG Py N

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal hex-hex 2.79e-3 | 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2
Nonconformal hex-hex | 2.90e-3 | 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3
Tet-hex 2.79e-3 | 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

LM = Lumped Mass, CM = Consistent Mass



Elastic Wave Propagation
Energy Conservation

Clamped Gaussian Z Problem Total Energy

2.2149 ¢
2, dominant

- - ==, dominant
b} ] | Single
x
n
> 22149t
> .
: Total energy is conserved

2.2149 - 5 .
3 and matches single-domain
5 total energy.
5 2.2149 } &Y
0
g
222149¢

2.2148 .

0 0.5 1 LS

Time 1n-3

* For clamped beam problem, total energy (TE = 0.5x7 Kx + 0.5 Mx) should be conserved.

* Total energy is calculated in 2 ways: with most of contribution from , and from ;.



Example #2: Tension Specimen ) .

* Uniaxial aluminum cylindrical tensile
specimen with inelastic J, material
model.

 Domain decomposition into two
subdomains (right): ()5 = ends,
(1, = gauge.

* Nonconformal hex + composite tet
10 coupling via Schwarz.

* Implicit Newmark time-integration
with adaptive time-stepping
algorithm employed in both
subdomains.

T HH
T T
T

» Slight imperfection introduced at
center of gauge to force necking
upon pulling in vertical direction.




Tension Specimen )

y-displacement Nodal eqps*
E1'm89m E2.226€~+[D
%D.CDﬁ §1m
Time: 0.000000 = =
—;1.4?&9‘ —51.1132
Et-omf) ;05566
-1.008=2 EU[IDH[D

Average of ~7 Schwarz
iterations/time step required
for convergence to Schwarz

tolerance of 1e-6.

*Nodal egps = equivalent plastic strain computed via weighted volume average.



Example #3: Bolted Joint Problem

Problem of practical scale.

* Schwarz solution compared to single-domain
solution on composite tet 10 mesh.

* (), = bolts (composite tet 10), (1, = parts (hex).

* Inelastic J, material model in both subdomains.
e ();: steel
e (),: steel component, aluminum (bottom) plate

BC: x-disp =0.02 at T =
1.0e-3 on top of parts.

Run until T=5.0e-4 w/ dt =
le-5 + implicit Newmark
with analytic mass matrix
for composite tet 10s.




Bolted Joint Problem

lirmez: (.000000

x-displacement

—
Single () v Schwarz



Bolted Joint Problem

Nodal Equivalent Plastic Strain (eqps)

0.000=+10 s aols

%IIIIIIIII|IIIIIIII1ﬁM-

Time: 0.000000

Cross-section of bolts obtained via clip (right)

lllllll

11 T
llllllll
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Bolted Joint Problem

Some Performance Results

-
o

Schwarz / solver settings

=}
o

T %

o
o

* Relatively loose Schwarz
tolerances were used:
* Relative Tolerance: 1.0e-3.
* Absolute Tolerance: 1.0e-4.
* Newton tolerance on NormF: 1e-8
* Linear solver tolerance: 1e-5
 Muelu preconditioner ol

B
=]

# Schwarz iters
w
=2

=

» Top right plot: # Schwarz iterations for each time step.

» After start-up, # Schwarz iterations / time step is ~¥9-10. This is not
bad given how small is the size of the overlap region for this problem.
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Summary ) e,

The alternating Schwarz coupling method has been developed/implemented for
concurrent multiscale quasistatic & dynamic modeling in Sandia’s Albany/LCM code.

© Coupling is concurrent (two-way).

© Ease of implementation into existing massively-parallel HPC cuucs. |

© Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

© “Plug-and-play” framework: simplifies task of meshing complex geometries!

© Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

© Ability to use different solvers/time-integrators in different regions.

© Coupling does not introduce nonphysical artifacts.

arantees (© for quasistatics).
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Ongoing/Future Work

Development of theory for dynamic alternating Schwarz formulation.
Journal article on our dynamic Schwarz formulation is in preparation.

Extension of Albany/LCM dynamic Schwarz implementation to allow for
different time steps in different subdomains.

Application of dynamic Schwarz for problems and test cases of
interest to production.

Implementation of alternating Schwarz method for concurrent
multiscale coupling in Sandia production codes (Sierra Solid
Mechanics), comparison to other methods (e.g., GFEM).

Development of a multi-physics coupling framework based on
variational formulations and the Schwarz alternating method.
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-valee problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est 1o regularize the partial differential egquation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modermn
engineering applications.

The ohjective of this work is to introdece concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to comnduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Mevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent resulis due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-valee problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est 1o regularize the partial differential egquation if loss of
ellipticity occurs.

Three-field multiscale
coupling formulation
with compatibility
enforced weakly using
Lagrange multipliers.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modermn
engineering applications.

The ohjective of this work is to introdece concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to comnduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Mevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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across different length scales. We show that a fully cou-
pled multiscale incremental boundary-valee problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est 1o regularize the partial differential egquation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modermn
engineering applications.

The ohjective of this work is to introdece concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to comnduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Mevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-

Method works well, but is
difficult to implement into



Appendix. Full Schwarz Method ) e

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, each converged to a tight tolerance (€,,4chine)-

12y « X$ inQy, 2l « x(XV) on o0, 25 XY onT > initialize for 2,
2: mg) “— Xg) in Q9, w(()z) “— x(X§2)) on Oy, :1:(;) — Xg") onI's > initialize for Q9
3: repeat > Schwarz loop
4 yD) mg) > for convergence check
g (1) (2) (2) (2) ;

: Ty Pixg’ + Qi2x,”’ + G’lzwﬁ B> project from Q2 to I'y
6: repeat > Newton loop for €21
% Awg) — —K&%(azg); mgl);m(ﬁl))\RS)(wg);mgl); az(ﬁl)) > linear system
8 mg) — wg) = Aazg)

9:  until ||A2Y)|/1125 || < emachine > tight tolerance
10: y(2) +— wg) > for convergence check
11: a:éz) — lewg) + lea:l(,l) + G’zlm(ﬂl) > project from Q; to I'g
12: repeat > Newton loop for €22
B se® c K@ @® 2®;2@)\ RO @@, 2®;2®) ieangylion
14: wg) — wg) + Amg)

15: until ||Aa:g)||/||:ng)|| £ Comchilie > tight tolerance
: W _ @O D)2 @ _ @1 ma@n 2] -
16: until (||y —2W|/||= ||) + (||y — 2?23 ||) < Gimadiine > tight tolerance




Appendix. Inexact Schwarz Method B,

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, with Newton step converged to a loose tolerance.

¥ wg) «— XI(BI) in Q1, a:,()l) — x(X,Sl)) on 0§21, :c'(al) — Xél) onI'y > initialize for 21
2: wg) - Xg) in 9, w§2) “— x(X§2)) on 9§22, :z:g) - X[(az) onI'g > initialize for {2
3: repeat > Schwarz loop
4: y(l) — mg) > for convergence check
5: mél) — Plgwg) + ngwgz) + Glzw(ﬂ2) > project from 22 to I'y
6: repeat > Newton loop for 21
i Amg) — —Kfqll)g(mg); wgl);wgl))\Rf:)(mg); a:l(,l); mg)) > linear system
8: wg) — mg) + Awg)

9:  until ||A:1:§31)||/||:1:§31)|| <e > loose tolerance, e.g. € € [1074,1071]
10: y(z) — mg) > for convergence check
11; w(;) — P21wg) + Qzlwgl) + Ggla:fgl) > project from 5 to I'y
12 repeat > Newton loop for €29
13: Amg) — —Kffg(a:g); a:l(f); w(ﬂz))\Rf) (wg); :z:l()z); mg)) > solve linear system
14: wg) — wg) + Awg)

15:  until ||Awg)|[/||wg)|| <e b loose tolerance, e.g. € € [1074,1071]
: 5y _ b e 0 2 @@z -
16: until [(ny( Y —2QN/=F1) + (Ily® - =P 11/1=$1) ] L iine > tight tolerance




Appendix. Monolithic Schwarz Method @) s.

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

1 wg) «— Xl(gl) in Q1, a:l()l) - x(Xél)) on 9,81, > initialize for €21
o azg) - X}(Bz) in Qo, wgz) < x(X§2)) on 9§22, > initialize for Qo
3: repeat > Newton-Schwarz loop
Azl K + KVH), KW H;, ~RYW .
4. 5) $— AB (2) AB (2) AB (2) \ é) > linear System
Az KAﬂH21 KAB+KAﬂH22 _RA
5: mg) - mg) + Amg)
6: wg) . wg) + Awg)
5 971/2
7: until [(nAmg)n/nmg)n) 5 (||Am§§)||/||mg)||) ] L Snaing > tight tolerance
Advantages:

e By-passes Schwarz loop.

Disadvantages:
e Off-diagonal coupling terms — block linear solver is needed.



Appendix. Modified Schwarz Method ) =,

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

1 wg) «— X(Bl) in Qq, wgl) — x(X,El)) on OS2y, mg) — Xél) onI'y > initialize for
2: wg) — Xl(az) in Qo, wl(f) - x(Xéz)) on O (22, m(ﬂz) < Xéz) onI'g > initialize for {29
3: repeat > Newton-Schwarz loop
4: w(ﬂl) — Plga:g) + Q12w£2) + Glzw(ﬂz) > project from Q9 to I'y
5: Amg) “— —KSL); (wg); a:gl); w(ﬁl))\RS)(wg); wgl); a:(Bl)) > linear system
6: wg) — wg) + Amg)
% @ « Py + Q M + Gy > project from Q5 to I
: B 21T 21y 21% 4 proj 1 2
8: Awg) — —ng(:z:g); :nl()z); wgz))\Rff)(wg); ar:l(f); mg)) > linear system
0: azg) — mg) + Awg)
10: until [(umg)u /||a:<B”||) g (||Aa:<,3>|| /||a,-(,3)||) ] & it > tight tolerance
Advantages:

Least-intrusive variant: by-passes Schwarz

* By-passes Schwarz loop. iteration, no need for block solver.

* No diagonal coupling (conventional linear
solver can be used in each subdomain).



Appendix. Convergence Proof
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Appendix. Foulk’s Singular Bar ) e,

o 1D proof of concept problem:
e 1D bar with area proportional to square root of length.

o Strong singularity on left end of bar.

o Simple hyperelestic material model with no damage.

MATLAB
« MATLAB implementation. TheLonuog of Tochncol Computng

w(0) =0 A(X) = Ao/ X/L uw(L) = A
7

L
e Problem goals:

o Explore viability of 4 variants of the Schwarz alternating method.
o Test convergence and compare with literature (Evans, 1986).

« Expect faster convergence in fewer iterations with increased overlap.




Appendix. Singular Bar and Schwarz Variariigs,

1.0 ,

~— Domain 2 108 :
- Subdomain ~— 64 elements
o Subdomain 2, | ~— 128 elements
! T ~——= 256 elements
a ~— 512 elements
= % 102} ~— 1024 elements |4
o) 06 o ssssswsna e orl sl o) | 53 < 92048 elements
GE) =t 4096 elements
E : : hs) 8192 elements
o 3 z 5, 1
@ 0.4 ) =@ X &
A i : g 10'}
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Appendix. Notched Cylinder: Nonconformal) &=,
HEX-HEX Coupling

1.446e-05

1.2e-5

ez
H

Qe-6

mmmh|||||||||l|||1‘rm

t:_% be-6
: 3e-6
0.000e+00
(a) O (b) Q2
ug relative error
Absolute residual tolerance O Qs
1.0 x 1078 1.31 x 1073 4.45 x 1074
1.0 x 10712 1.30 x 1073 4.43 x 1074
1.0 x 10~ 14 1.30 x 1073 4.43 x 1074
9.5 s¢ 1§ 1.30 x 1073 4.43 x 10~




Appendix. Multiscale Modeling of =i,
Loca I |Zat|0 N Region of localization (fracture)

Region of
localization |-
(necking) |

/ ¢‘

Strain localization can cause localized necking (left)
and ultimately fracture (above).

Goals:

* Connect physical length scales to engineering scale
models.

- jﬂg} . * Investigate importance of microstructural detail.

» Develop bridging technologies for spatial multiscale/
multiphysics.



Appendix. Parallelization via DTK: Weak @)
Scaling on Cubes Problem

10%
@ //////0
()]
g 3 r 7///
= 107 ¢ ///0
T
°
|—

102 1

10° 10" 10

Number of Processors

1 Processor,
2.5*103 DOF / proc

8 Processors,
2.1*10° DOF / proc

64 Processors,
1.9*103 DOF / proc
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Appendix. Rubiks Cube Problem )

Two distinct bodi h Work by J. Foulk, D. Littlewood,
anisotropic wo distinct bodies, the component C. Battaile, H. Lim

.. | scale and the microstructural scale,
crystal elasticity i . ;
are coupled iteratively with

Isotropic alternating Schwarz
elasticity

distinct
models

overlap

component

concurrent
scale

coupling

plotting axial

stress microstructural

scale




Appendix. Tensile Bar

Cauchy Stress 11
125.0

92.5

60.0

27.5

Embed microstructure in
ASTM tensile geometry




Appendix. Tensile Bar: Meso-Macroscaleg e
Coupling

Mesoscale

Macroscale

SPARKS-generated
microstructure (F. Abdeljawad)

cubic elastic constant : C';; = 204.6 GPa
cubic elastic constant : C15 = 137.7 GPa
cubic elastic constant : Cyy = 126.2 GPa

® | oad microstructural ensembles in uniaxial stress
" Fit flow curves with a macroscale J, plasticity model

reference shear rate : 99 = 1.0 1/s 350
° o [ X ]
rate sensitivity factor : m = 20 casesee st AN PR EE,
hardening rate parameter : go = 2.0 x 10* 1/s 300+

initial hardness : go = 90 MPa Young’s modulus : £ = 195.0 GPa

saturation hardness : g, = 202 MPa § 250+ Poission’s ratio : v = 0.3
saturation exponent : w = 0.01 é vield stress : oo = 144 MPa

Fix microstructure, investigate ensembles 3 200/ hardening modulus : H = 300 MPa-
= saturation modulus : S = 170 MPa

151 axial vectors
from 3 of the 10
ensembles of
random rotations
(blue, green, red)

150 saturation exponent : a = 190

e e 10 CPensembles

— 2 fit

l L L L L L L L
8(.)000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
equivalent plastic strain(mm/mm)

oy =00+ Hey +5(1 —e )




Appendix. Tensile Bar: Results )

| : E1.035
Reduction in cross-sectional o S 1025
area over time e s . 1014
' i 1.003
0.01005
time
0.01000
)=
£ 0.00995} F 11
§ - I].035
- 11.025
0.00990 E
Imos
0'009§5O.IO —Oi.05 O.bO 0.b5 0.10

Location [mm]




Appendix. Schwarz Alternating Method )&=
for Dynamics

= Inthe literature the Schwarz method is applied to dynamics by using space-time
discretizations.

= This was deemed unfeasible given the design of our current codes and size of

simulations. _
Time

*
I * (2
Ql < =

Y

4 A 4 \)
T2
D

—o0—0—05—0—0—5 © > Space
-~

hl h2

Overlapping non-matching meshes and time steps in dynamics.



Appendix. A Schwarz-like Time Integrator @/&z.

= We developed an extension of Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.

= (Can use different integrators with different time steps within each domain.

= 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

Controller time stepper
[ | |
Time integrator for (2,

Time integrator for (2,




Appendix. Dynamic Singular Bar )

= |nelasticity masks problems by introducing energy dissipation.

= Schwarz does not introduce numerical artifacts.
= Can couple domains with different time integration schemes (Explicit-Implicit below).
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0.000 —1.0f

—00035 0.2 0.4 o5 0.8 10 o ~190 0.2 0.4 0.6 o5 10
Position Position

0.030 L5 X107

0.025} u »

0.020} A
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Appendix. Elastic Wave Propagation

Some Performance Results

5 10°

Q
2
0 |
© 4.5
= !
= 10°°
a _
2 4| 3
O VQJ
ﬁ —
— o

-
% 35 5 10710
& ] 2
= | =
5 \ T
»n 3 K-R‘_(/'-\*-_N\\ x
) D A5 e 1st timestep
_g N o~r - |- 2nd timestep
S 25 i 10th timestep
Zo) ) N —m 1000th timestep
z A ~ =~ last timestep

N slope = -1
2 . : 1 L - 1020 . .
0 20 40 60 80 100 1071° 10710 107 10°

Size of Overlap Region [%] Relative error ¢

 Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The
method does not converge for 0% overlap. If the overlap is 100% then the single-domain
solution is recovered for each of the subdomains.

 Right figure shows linear convergence rate of dynamic Schwarz implementation (for small

overlap fraction of 0.2%).
T ————T e e —— s S




Appendix. Torsion )

Nonlinear elastic bar (Neohookean material model)
subjected to a high degree of torsion.

* The domainis (1 = (—0.025,0.025) X
(—0.025,0.025) x (—0.5,0.5).

* We evaluate dynamic Schwarz with 2 subdomains:
Q, = (—0.025,0.025) x (—0.025,0.025) x
(—0.5,0.25),Q, = (—0.025,0.025) X
(—0.025,0.025) x (—0.25,0.5).

» Time-discretizations: Newmark-Beta (implicit,
explicit) with same At.

* Meshes: hexes, composite tet 10s.




Sandia

Append IX. Torsion Schwarz and single-domain results ~ Matoral

agree to almost machine-precision!

Conformal Hex + Hex Coupling O Qes

* Each subdomain discretized using uniform hex mesh with Ax; =
0.01, and advanced in time using implicit Newmark-Beta scheme
with At =1e-6.

e Results compared to single-domain solution on mesh conformal with

Schwarz domain meshes.

Displacement relative errors at final time (T=0.002) ol relerror

—1.8463e-13

N
w
o
®
(0]

w

Tt

Eé.1542e-14
9.5026-16
velrel
olrel§55be-12

T —— _ .
T T
-Ql A SR 2800 EReS 182 342 I =1.6624-12

=3.10826-12

I

jeeaashit o = e E1.55413-12
1236e-14
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Appendix. Torsion =
Hex + Composite Tet 10 Coupling
* Coupling of composite tet 10s + explicit Newmark with consistent

mass in 1o with hexes + implicit Newmark in ;.

* Reference solution is computed on fine hex mesh + implicit
Newmark Qpef

Relative error <1% and
does not grow in time!

No dynamic
0.18
artifacts! Y
0.14
B 0.12
g 0.1
% 0.08
Time: 0.000000 " 0.06
0.04
0.02 J k
7 R
% 50 100 150 200 20
snapshot #
Movie of |displacement|
o Left: Single-domain,
Right: Schwarz




Appendix. Torsion

Some Performance Results

1(]0 T T T
P o
#
-5 A
- 10 -’,s»;’j
-
E. ] ’J.r"l
“ i
[~ -~
o F
@ 10710 /
e -~
o (,/f o
(48] r
(= - // P lsat timestep
o r A e 2nd timestep
—-—-—10th timestep
1000th time step
————— last timestep
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« Convergence behavior of the dynamic Schwarz algorithm for the torsion problem for small
overlap volume fraction (2%) in which each subdomain is discretized using a hexahedral
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mesh. The plot shows that a linear convergence rate is achieved.




Appendix. Bolted Joint Problem

y-displacement
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Appendix. Bolted Joint Problem .

z-displacement
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