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Fe-Ni-Cr Potential

Five criteria for "Good" Fe-Ni-Cr potential

1. Give reasonable energy and volume for various
compositions

2. Permit stable MD simulations of austenite

3. Prescribe well the elastic constants

4. Capture the correct stacking fault energy (Ifs)

5. Pass stringent MD validation tests
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Status of Literature Fe-Ni-Cr Potentials

1. Our old potential (CALPHAD 1993, 17, 383) did not consider the four criteria

2. Smith and Was' potential (PRB 1989, 40, 10322) was fitted to effective atoms and
did not consider stacking fault energy

3. The 2013 version of Bonny et al's potential (MSMSE 2013, 21, 085004)
incorrectly predicts phase separation
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4. The 2011 version of Bonny et al's potential (MSMSE 2011, 19, 085008)
incorrectly predicts negative slope of stacking fault energy with Ni composition

5. Tong et al's potential (Mol. Sim. 2016, 42, 1256) incorrectly predicts large
negative stacking fault energy (— -200 mJ/m2)

6. The 2018 version of Bonny et al's potential (MSMSE, 2018, 26, 065014) is based
on the 2013 version
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We Developed an Fe-Ni-Cr EAM Potential
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An Fe-Ni-Cr Embedded Atom Method Potential
for Austenitic and Ferritic Systems
Xiaowang W. Zhou, * Michael E. Foster, and Ryan B. Sills

Fe-Ni-Cr stainless-steels are important structural materials
because of their superior strength and corrosion resistance.
Atomistic studies of mechanical properties of stainless-steels,
however, have been limited by the lack of high-fidelity intera-
tomic potentials. Here using density functional theory as a guide,
we have developed a new Fe-Ni-Cr embedded atom method
potential. We demonstrate that our potential enables stable
molecular dynamics simulations of stainless-steel alloys at high
temperatures, accurately reproduces the stacking fault energy—
known to strongly influence the mode of plastic deformation

(e.g., twinning vs. dislocation glide vs. cross-slip)—of these alloys

over a range of compositions, and gives reasonable elastic con-
stants, energies, and volumes for various compositions. The lat-
ter are pertinent for determining short-range order and solute
strengthening effects. Our results suggest that our potential is
suitable for studying mechanical properties of austenitic and fer-
ritic stainless-steels which have vast implementation in the scien-
tific and industrial communities. Published 2018. This article is a
U.S. Government work and is in the public domain in the USA.
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introduction

Fe-Ni-Cr stainless-steels have superior mechanical and corrosion-

resistive properties, but are more expensive than many other
steels. A science-based design of new material compositions

with a reduced cost requires a fundamental understanding of

mechanical properties including dislocation characteristics

(e.g., core structure, energy, and mobility), deformation mode

(e.g., dislocaflon motion vs. twinning vs. phase transformation),

and decohesion of interfaces such as grain boundaries. One way

to achieve such an understanding is through molecular dynam-

ics (MD) simulations. Such simulations require a high-fidelity Fe-

Ni-Cr temary interatomic potential. For simulations of mechani-

cal properties, by 'high-fidelity' we refer specifically to four cri-

teria: (1) permit stable MD simulations of alloys (eg., no artificial
phase or solute segregation at elevated temperatures); (2) cap-

ture the correct stacking fault energy (N) known to strongly
influence twinning and dislocation cross-slip; (3) accurately

reproduce the elastic constants; and (4) give reasonable energies
and volumes for relevant compositions and phases.
To our knowledge, five Fe-Ni-Cr interatomic potentials have

been publishedP't The potential we published in 1993m was

not targeted at meeting the four criteria, therefore, it was not

considered. We also did not consider the potential published

by Smith and Was in 198910 for two reasons: (1) the Ni-Fe and

Ni-Cr components of their potential were fitted approximately

where different species were not distinguished but were rather

treated as identical "effective" atoms and (2) the fitted and

tested properties did not include the stacking fault energy. We

did however test the other three literature potentials. Interest-
ingly, we found that with the 2013 version of the potential

developed by Bonny et aI.,m Cr is unstable in solution in the
austenite phase and separates out at elevated temperatures.

This is inconsistent with the experimental observation that

austenite is a stable, homogeneous phase at elevated tempera-

tures. The 2011 version of the potential developed by Bonny

et al.(31 does enable stable MD simulations of austenitic
stainless-steels, and should be a more appropriate potential

than the 2013 version for studying mechanical properties. How-

ever, we find that the 2011 potential predicts a decreasing

stacking fault energy with increasing Ni content, a behavior
that is inconsistent with experimental evidence and density

functional theory (DFT) calculations.i° The potential developed

by Tong et predicts large negative values of stacking fault

energy. This suggests that a face centered cubic (fcc) austenite
crystal may not be as stable as a hexagonal close packed (hcp)

crystal with this potential. In summary, the 2011 version of
Bonny et al:s potential would be our first choice for studying

mechanical properties, although, there is an issue with the

trend in stacking fault energy with increasing Ni concentration.

The other potentials are less appropriate for studying mechani-

cal properties, but may be suitable for other applications.
To advance MD simulations of mechanical properties of

stainless-steels, we have developed a new Fe-Ni-Cr embedded
atom method (EAM) potentialm with focus on satisfying the

four criteria outlined above. In addition, our potential captures
the lowest energies for the equilibrium elemental crystals—

body-centered-cubic (bcc) for Fe and Cr and fcc for Ni—and

enables stable simulations of both austenitic (fcc) and ferritic
(bcc) alloys. This represents an improvement over the other lit-

erature potentials, which can usually be used only for austenitic

X. W. Zhou, M. E. Fostes, R. 8. Sills
Sandia National Laboratories, Livermore, CalifornM 94550
E-maik ozhou@sandiagov
Contract Grant sponsor: U.S. Department of Energy's National Nuclear
Security AdministrationContract Grant number: DE-NA4/003525

Published 2018. This article is a 0.5. Govemment work and h in the public
domain in the USA.
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Fe-Ni-Cr Criterion 1: Energy and Volume Trends

(a) Energy (b) Lattice constant
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Calculated swelling for Ni and Cr in bcc Fe are 10% and 8% respectively, compared to 5%
and 4% experimental values (King, J. Mater. Sci., 1, 79, 1966)
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Fe-Ni-Cr Criterion 2: Stable Austenite

(a) Fe-Ni
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Fe-Ni-Cr Criterion 3: Elastic Constants
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Experimental data for 316L from (1) Ledbetter, Ultrasonics 1985, 23, 9; (2) Bonny et al, MSMSE 2011, 19,

085008; (3) Bonny et al, MSMSE 2013, 21, 085004.
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Fe-Ni-Cr Criterion 4: Stacking Fault Energy

Time averaged MD over 0.4 ns

(a) Convergence of MD stacking fault energy
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The predicted stacking fault energies match well with experimental results (see, for
example, Vitos et al, PRL 2006, 96, 117210, and references therein).
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Fe-Ni-Cr Criterion 5: Stringent MD Melting Tests

x

(a) bcc Fe, atom map, Tm = 2399 K

(c) fcc Ni, atom map, Tni = 1346 K

(d) fcc Fe,0.6Ni0.2Cro.2, atom map, T,„ = 2100 K
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(b) bcc Cr, atom map, Tm = 2133 K

--> y

(e) bcc Fe0.6Ni0.2Cro.2, atom map, equilibrated at 1705 K

atom: Fe Cr • Ni

structure: • fcc • bcc • hcp undefined

Note Bonny et al's 2013 version gives:
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Fe-Ni-Cr Criterion 5: Stringent MD Growth Tests

(a) Fe on bcc Fe, atom rnap
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Fe-Ni-Cr-H Potential

Five more criteria for "Good" potential

1. Give good diffusion barriers in Fe, Ni, Cr

2. Prescribe well Fe-H, Ni-H, Cr-H energy trends

3. Capture correct swelling volumes in Fe, Ni, Cr

4. Match negative H-H energies from DFT

5. Pass stringent MD validation tests
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H Criterion 1: Diffusion Energy Barriers

1.0

0.9

0.8

0.7

\""/ 0.6
ta0

0.5

0.4

0.3

0.2

0.1

0.0

Diffusion energy profiles Method for fcc Cr

- QFe (DFT) = 0.62 eV Qcr (DFT) = 0.67 eV

(DFT) = 0.40 eV

0 2 4 6 8 10 12 14 16 18 20

octahedral-tetrahedral relative coordinates

ISOPE

Small blue: Fe; big blue: Cr; red: H

ISOPE-2019

Honolulu



H Criteria 2-4: H Swelling and H-H Energy Trends

Swelling volume/energy trends in Fe, Ni, Cr

H-H energy trends in Fe, Ni

Table I. H swelling volume OH, relative H binding energy under local M

environment AEH(m), and H-H interaction energy under local M

environment AEH_H . Matrix is either fcc Fe or fcc Ni

property M = Fe (in fcc Fe) M = Ni (in fcc Ni) M = Cr (in fcc Fe)
MD DFT MD 1 DFT MD DFT

OH (A3) 2.11 2.16 2.44 2.23 1.90 1.95

AEHN) (eV) 0.00 0.00 -0.19 -0.14 -0.36 -0.29

AEH_H(m) (eV) -0.015 -0.010 -0.053 -0.0281

ISOPE 1. von Pezold et al, Acta Mater. 2011, 59, 2969. ISOPE-2019

Honolulu



H Criterion 5: Stringent MD Tests
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Working in Progress

1. Our potential predicts hydrogen-vacancy
interaction energies of -2.3, -2.4, and -1.7 eV
in fcc Fe, Ni, and Cr

2. The corresponding values from our DFT
calculations are -0.36, -0.22, and -4.4 eV

3. We are working to address this issue
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MD Tensile Test Simulations
304L: Cro.19 T = 600 K, c = 1.0, t = 5 ns
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Opportunities: Al-H Example
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Hydrogen Cottrell atmosphere from
energy calculation

1. Unlike literature Monte Carlo methods which
statistically sample hydrogen sites, our energy maps
exhaustively calculate all 50760 sites

2. Well behaved hydrogen Cottrell atmosphere is
obtained
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Opportunities: Al-H Example

Hydrogen Cottrell atmosphere from time averaged
MD calculation

1. Demonstrate that MD can produce meaningful Cottrell atmosphere
results

2. This is significant as MD provide time information
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Conclusions

❑ Our Fe-Ni-Cr potential

➢ Gives reasonable energy and volume for various compositions

➢ Permits stable MD simulations of austenite

➢ Prescribes well the elastic constants

➢ Captures the correct stacking fault energy

➢ Passes stringent MD validation tests

❑ Our H-metal potential

➢ Gives good diffusion barriers in Fe, Ni, Cr

➢ Prescribes well Fe-H, Ni-H, Cr-H energy trends

➢ Captures correct swelling volumes in Fe, Ni, Cr

➢ Matches negative H-H energies from DFT

➢ Passes stringent MD validation tests
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