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Abstract— Timeseries power and voltage data recorded by
electricity smart meters in the US have been shown to provide
immense value to utilities when coupled with advanced ana-
lytics. However, Advanced Metering Infrastructure (AMI) has
diverse characteristics depending on the utility implementing
the meters. Currently, there are no specific guidelines for the
parameters of data collection, such as measurement interval,
that are considered optimal, and this continues to be an active
area of research. This paper aims to review different grid edge,
delay tolerant algorithms using AMI data and to identify the
minimum granularity and type of data required to apply these
algorithms to improve distribution system models. The primary
focus of this report is on distribution system secondary circuit
topology and parameter estimation (DSPE).

Index Terms— AMI, correlation, linear regression, parameter
estimation, noise, resolution, sampling interval, time synchro-
nization

I. INTRODUCTION

From 2009 to 2015, public and private investments under
the US DOE-led smart grid initiatives totaled $7.9 billion,
of which $5.2 billion have gone towards AMI (Advanced
Metering Infrastructure) and customer metering technologies
[1]. The primary objective driving AMI investments has
been automated, timely, and accurate billing, which were
previously hampered by weather and property access limita-
tions. As of 2016, nearly half of the 152 million electricity
customers in the US have smart meters and utilities have
reported an average of $6 million savings per project per year
from just remote billing and metering services. Additional
smart meter functions include remote connect/disconnect,
tamper detection, outage and voltage monitoring etc. which
have had substantial grid benefits like providing customers
with more control over their electricity consumption and
lowering outage costs and customer inconveniences through
faster outage restoration.

Thus, many utilities are committed to investing in this
technology and the total number of smart meters is growing
annually. However, despite their advantages, the current im-
plementation of AMI infrastructure incur high costs; upwards
of $300 per end-point [2] in addition to installation and
commissioning. This has made AMI a highly expensive au-
tomatic meter reading (AMR) implementation and extracting
maximum value from AMI data is critical.

Research over the past decade has shown that significant
new value streams and applications, beyond just consumer
billing, can be developed by coupling advanced analytics and

AMI data. Time-stamped, granular voltage and power data
from AMI has enabled numerous operational and planning
capabilities such as load forecasting, topology reconstruction,
phase identification, load dissagregation, etc. [7] - [20]. Many
utilities have shown immense interest in integrating these
functionalities within their O&M (Operations and Mainte-
nance) systems or have already conducted pilot programs to
test several of these algorithms.

However, AMI data has diverse characteristics depending
on the utility implementing the meters. A lack of common
metering practices or consistent data formats inhibits utilities
from deriving maximum value from their AMI investments.
This project aims to conduct a systematic study to iden-
tify the minimum data and AMI capabilities required to
implement different algorithms and use-cases. This is an
active area of research to develop guidelines for utilities who
are looking to install smart meters or are trying to extract
additional value from their existing AMI infrastructure.

Some of the key questions explored in this paper are:

e Sampling Time Interval: AMI meters record data at
hourly intervals or less and make that data available
to utilities or customers at least once a day [1]. While
many utilities have opted for smaller time intervals
such as 15 minutes, the additional benefit this unlocks,
at the cost of higher bandwidth and communication
requirements, is not completely evident.

o Average vs Instantaneous data: A programmable feature
in smart meters is the ability to chose between average
or instantaneous voltage readings. While the industry
leans towards the former for billing purposes, there is
still some ambiguity regarding this, and many utilities
have expressed the need to understand which data type
might be more beneficial.

o Reactive power information: Most smart meters today
record voltage and active power data [5]. While state-
of-the-art meters are equipped with advanced sensing
capabilities and can provide additional information such
as harmonics, load power factor, etc., many utilities have
not enabled these features due to cost or other concerns.

« Data Resolution: In order to reduce data storage require-
ments, utilities may save compressed data with fewer
decimal values from their voltage and power readings
in their long-term databases. The impact of this loss of
information and the additional benefit of storing higher
resolution data is explored in this paper.
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o Time Synchronization: Many smart meter algorithms
depend on analyzing data aggregated from all smart
meters on a feeder. Understanding the impact of time
drifts within each meter’s internal clock is an important
aspect to consider.

« Non-controllable noise parameters: The authors have
also studied the impact of non-controllable, but common
sources of error, such as meter bias, random noise, and
missing data on the AMI algorithms.

Section II explains the approach taken to test these al-
gorithms and generate the synthetic AMI data set. Section
IIT describes the different smart meter algorithms considered
in this paper. Section IV discusses the results of the study
on various noise parameters. Recommendations, future work
and conclusions are included in Section V .

II. APPROACH AND SIMULATION SETUP

In order to determine what AMI capabilities and data
features are required to enable different algorithms, the
following steps were taken:

1 The most common state-of-the-art approach for each
application, as seen in literature, was determined and
replicated.

2 Synthetic AMI data was generated to test these al-
gorithms by developing a realistic distribution feeder
simulation in OpenDSS. This approach attempts to
mimic real life implementation and performance of AMI
algorithms.

3 A mathematical analysis to explain the experimental ob-
servations and understand the algorithms performance
in the presence of various noise inputs was conducted.

The OpenDSS simulation is based on EPRI’s Test circuit
*ckt5’ [4]; a 12.47 kV residential feeder with 1379 residential
loads and 584 transformers. 12 months of consumption data
at 1-minute intervals was extracted from Pecan Street’s [4]
Dataport for the power flow simulation, and high-resolution
voltage data was recorded at each consumer node. This
consumption data was collected from homes located in
Austin, Texas between 2013-2017. The synthetic data was
tested on algorithms with different levels of noise and
inaccuracies and their average accuracy reported for the
entire feeder. Descriptions of the simulated feeder and load
profiles are shown below in Fig. 1 to 3.

III. SMART METER ALGORITHMS

A literature review of smart meter analytics was conducted
to understand different use-cases for AMI data. The various
applications, algorithm types and data requirements (in addi-
tion to GIS data) are summarized in Table I below. These are
a mix of delay tolerant and real-time use-cases that can be
enabled or improved using AMI data. Delay tolerant refers
to those algorithms that can tolerate high latency in data
retrieval and computation.

In this paper, the results have been explained with respect
to topology correction algorithms, namely secondary network
parameter estimation [7] and meter-transformer mapping [9].
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The results for phase detection have been illustrated in
[10]. The analysis for other algorithm categories such as
rooftop solar, electric vehicle (EV) detection, non-technical
loss detection, etc. is ongoing.

The exponential injection of new technologies such as
electric vehicles, rooftop solar, storage, and other distributed
energy resources (DERs) is changing the traditional behavior



TABLE I
SUMMARY OF SMART METER ANALYTICS

Category Application

Data Requirements Latency References

Phase Identification

Voltage magnitude [12]

Topology Correction/

Modalisg Meter-Transformer Mapping

Voltage magnitude [9]

Secondary Network Parameter Estimation

Voltage magnitude, active & Delay tolerant 7]

Load Modeling & Consumer Segmentation

Loadl Anslysis Load Forecasting

reactive power
Active Power, Weather data, [19]
[18]

Load Disaggregation - Electric Vehicle Detection

Price Information
Delay tolerant/ | [17]

Rooftop Solar Identification

Active Power
Real-time 20]

Detection of Non- technical losses

Active Power, Voltage mag,
[13]

Delay tolerant

Power Loss Outage Management

Solar Irradiance
[14]

GIS, Voltage mag, Time of outage

Fault Detection

- - Real ti
Voltage magnitude, active & eal e

Load data, Voltage mag
reactive power [15]

Feeder Analysis Detection of Low/High Voltage Areas

Delay tolerant/

Real-time [16]

Voltage magnitude

and control of power systems. This increasing complexity in
the distribution landscape requires utilities to enhance their
visibility and to model their network with more granularity.
Often, these connections change due to storms, zoning issues,
etc. and might not get reflected in the utility’s database.
Incorrect or missing connectivity information in distribution
system models of the low-voltage system can make it difficult
for utility operators to take optimal operation decisions
regarding the distribution system. Several works [13]-[20]
have demonstrated that smart meter data can be utilized to
correct these topological errors as explained below.

A. Meter-Transformer Mapping

The first step in developing the topology of low voltage
networks is to determine which meters are connected to
which phase or service transformer. Several papers have
shown that the time-series voltage correlation between
closely connected buses is much higher than with buses that
are electrically further away [9]. While various approaches
have been adopted, correlation and mutual information form
the foundation of many of these algorithms. These have been
shown to be effective with raw voltage data as well as a
voltage fluctuation representation of the timeseries voltage
data.

Fig. 4 illustrates this concept and shows voltage profiles
of neighboring and non-neighboring buses.

The equation for Pearson correlation used on time series
voltage data is shown in (1). Meters with a correlation coeffi-
cient higher than 0.97 are considered to have a nearby point
of common coupling; likely to be the service transformer.
Location information was utilized to ignore correlations
between meters that were not within a 100m radius of each
other.
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where V; refers to individual voltage readings for meters 1
and 2 and V is their respective voltage means.
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Fig. 4. Voltage profiles of neighboring and non-neighboring meters

B. Distribution System Secondary System Parameter Estima-
tion

After pairing meters with their respective service trans-
former and phase, the exact topology and cable parameters of
the low-voltage secondary network can be determined. The
parameter estimation algorithm introduced in [12] and further
developed in [7] and [8] distinguishes between serial and
parallel connections and determines the length and effective
impedance of cables from the service transformer to the load.

These algorithms employ linear regression and are based
on the voltage drop approximation equation.

For Fig. 5, the equations for each parallel branch are:

Vo=Vi+Ip Ri+1IxX1+e 2)

Vo=Vo+1Ip, Ry + Ix, X2+ €2 3)

Vo = Vn + IR"Rn + IX,,LXn + €n (4)
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Fig. 5. Radial distribution system secondary system parameter estimation.
The measured values (blue) are used to estimate the circuit topology and
impedance (red) [7]

where Ir = P/V, Ix = Q/V;

P and Q are load active and reactive power. This can be
rewritten in the form of a linear regression problem:

Vi—-Vo=V=1Ip,Ro+Ix,Xo—Ip, R —Ix, X1 (5

The results of both the algorithms, applied on the entire
circuit consisting of 1379 residential customers, are summa-
rized in Table II. Single phase meters were correctly paired
with other meters on the same service transformer with an
accuracy of 93.8%. Cable resistance (R) and reactance (X)
were accurately estimated with a mean error of 1.2% and
2.6% respectively. If the accurate cable type is known, this
equates to an average error of 1.26 ft. These results have
been used as reference for subsequent analysis.

TABLE 11
SUMMARY OF ALGORITHM ERRORS FOR CKT5 TEST SYSTEM

Meter-Transformer Mapping

| 93.8%
Parameter Estimation

Accuracy

R% error | X% error | Length (ft)
Mean Error 1.2064 % | 2.6187% 1.26
Mean Absolute Error 1.5400 % | 3.284% 1.4
Root Mean Square Error | 1.653 % 3.5010% 1.5

IV. RESULTS AND DISCUSSION

The experiment design and results for different cases
have been summarized below. Corresponding trends can be
observed in Fig.6 for error in pairing transformers and Mean
Absolute Error of all resistance estimations.

1) Sampling Time Interval: The 1-minute granularity
time series measurements are grouped by the new
interval size and then averaged (or the last reading
is taken for instantaneous voltage measurements) to
obtain the new timeseries measurement for 5, 15, 30
and 60 minutes.

Observations: Fig.6a shows that when the data is
perfect, i.e. no noise is added, the time interval does not
impact accuracy. Averaged voltage data performs better
than its instantaneous counterparts for larger intervals.

2)

3)

4)

5)

6)

7)

Data Resolution: Each measurement for the required
time interval data set is rounded to the desired res-
olution. The maximum resolution provided by the
simulation is 10mV and 0.1W. This corresponds to 2
and 4 decimal points each.

Observations: At least 0.1V and 0.1kW resolution
(1 decimal point each) was required to maintain rea-
sonable levels of accuracy as shown in Fig.6b. Finer
resolution beyond that do not result in significant
improvement.

Time Synchronization: A maximum offset from 0-
4 minutes was added to each meter at the 1-minute
interval resolution, and its impact was studied for the
different time intervals.

Observations: As the reporting time interval increases,
the algorithm becomes more robust to time displace-
ment errors (Fig.6¢). This assumes the quantity of data
is the same.

Quantity of Data: The impact of quantity of data
was studied by utilizing data from different numbers
of months.

Observations: A small and steady increase in the
accuracy was observed when more data is utilized.
Fig.6d shows a 2-3% improvement in performance was
observed between using 1 month and 1 year of perfect
(noiseless) data.

Meter Bias: For each meter a bias error is chosen at
random and added to each measurement of that meter.
The bias ranged from 0-2% of the mean at intervals
of 0.5% and sampled uniformly between the negative
and positive of the maximum bias level.
Observations: Fig.6e reveals that bias does not impact
linear regression or correlation methods. For example,
in the former it is absorbed as constant noise and only
impacts the intercept and not the slope of the line.
Uniform Noise: Noise is injected into each meter
reading at random within the range [-Max, +Max]. The
maximum noise level is varied from O to 1% of the
nominal at steps of 0.1% and the noise is distributed
uniformly between the negative and positive of the
maximum level.

Observations: Noise noticeably affects the accuracy
of the algorithm as seen in Fig.6f. Averaged and
larger time intervals (> 15 minutes) tend to be more
robust to noise. 0.35-0.55% noise in voltage data is
a reasonable threshold. For smaller time intervals (~
Smin) a significant increase in error is seen beyond
the 0.35% threshold. For larger time intervals, while
the increase in error is more linear the accuracy drops
below 95% beyond the recommended noise range.
Missing Data: Random data points from the data
sets were dropped after averaging to the required time
intervals. This can be caused due to failure in the
communication network, packet drops, outages etc.
Observations: Missing data does not impact the al-
gorithm performance in both cases if sufficient data
is used (here, 4-6 months). This is possibly because



TABLE III
SUMMARY OF AMI DATA REQUIREMENTS

Parameter Without Base Noise With Base Noise
Measurement Interval Any interval 30 and 60 min.
I T———— Any type for srpaller intervals. . Averaged data performs well .esp.ec1a.lly in the
Average for larger intervals (>30min) presence of time synchronization issues.
Data Resolution At least 0.1V and 0.1kW (1 decimal) required.
Meter Bias No Impact
Meter Precision(Noise) 0.35-0.55 % maximum noise in Voltage : Corresponds to ANSI standards class 0.2
Time Synchronization Averaged and larger measurement intervals are more robust
Missing Data Low sensitivity to missing data
Data Quantity ~ 1 month | Error decreases steadily with larger quantities of data.
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linear regression and correlation can perform well in
the presence of missing data.

8) Unknown Power Factor: Often, smart meters do not

record kVAr, and there is no power factor informa-
tion available. Many algorithms based on AMI data,
such as parameter estimation described in Section III,
require kVAr readings. To get around this, random
power factors were employed. Additionaly, the value
of knowing the type of cable (here, X/R ratio= 0.304)
was explored.
Observations: Knowledge of the cable type used by
the utility is extremely powerful. Fig.6h compares the
results of DSPE when kVArh was measured (indicated
by 1) vs when kVArh was not measured but the
cable’s X/R ratio was utilized (indicated by 0). Using
a fixed X/R ratio, i.e. constant line slope in the linear
regression formulation, the algorithm performs as well
as the original case.

While Fig.6 compares the impacts of testing a range of
individual error cases, these scenarios might not provide
sufficient insight into optimal AMI capabilities as many of
these errors occur simultaneously. Thus, to mimic realistic
data with reasonable error levels, the following errors were
injected into the 1-minute interval base data set. The noise
levels conform with meter standards such as ANSI C12.

« Data Resolution — 0.1 V

e Meter Bias — 0.2%

e Meter Precision (Noise) — 0.2%

o Time Synchronization Issues — 1 min displacement for

20% of meters

The results from the simulations with multiple errors si-
multaneously injected show similar overall trends to the
simulations of the errors in isolation from Fig. 6. Table III
shows combined recommendations for topology estimation
algorithms using smart meter data based on the results from
testing the AMI data parameters and errors in isolation as
well as comparing with the results from injecting errors
simultaneously.

V. CONCLUSIONS

The type and granularity of AMI data collected are impor-
tant considerations for implementing smart grid algorithms
such as parameter estimation, phase detection etc. This paper
reviews various use-cases and makes recommendations on
appropriate data types and AMI capabilities. The additional
value derived from different data types and resolutions
has also been analyzed. The paper experiments with both
controllable parameters such as measurement intervals, data
resolution, etc., as well as uncontrollable features such as
meter bias. It was concluded that averaged data at 30 or 60
minute intervals with 0.1V and 0.1kW resolution was optimal
for topology related algorithms. While smaller intervals like
1 or 5 minutes provide more granularity and less data loss,
they were also less robust to noise and other issues.

Algorithms not covered in this paper might have different
data requirements. For example, load dissagregation might

require data at higher sampling intervals, but time synchro-
nization issues might not affect its accuracy. Thus, more use-
cases need to be tested with a similar approach in the future.
This study will allow utilities to determine optimal smart
meter features that drive maximum value for them.
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