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2 The Calculation

❖This is a quantum-mechanical line-shape calculation
❖The wavefunctions of the electrons are solved in the long-range coulomb potential of the atom

❖ Meaning that we use Coulomb waves

❖ Have option to do a Distorted-wave treatment (in progress)

+Full Coulomb treatment of the atom-plasma interaction

+Exchange interactions are included

❖ Includes non-orthogonality of perturber and radiator wavefunctions (Seaton 1953)

This is based on the relaxation theory and uses a second-order expansion of the T-matrix



3 I Relaxation Theory

+Leviathan uses the relaxation-theory results based on what was derived by Gomez et al. (2018)

H(w) (T (w))
1 + (w — Lg)-1 (T (w))
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+Leviathan uses a second-order (binary-collision) expansion so that
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5 I The Propagator (the imaginary part)

The propagator has real and imaginary parts
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The imaginary part eliminates one of the integrals in the second-order expansion
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6 I The Propagator (the imaginary part)

The propagator has real and imagin;

The imaginary part eliminates one c
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7 I The propagator (the real part)

+When we evaluate the principal value, we take the Ak steps that are small enough that V does not
vary appreciably over the step
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8 I The propagator (the real part)
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9 I Evaluating the Angular Integrals

+For each of the matrix elements, we evaluate the angular integrals according to the Cowan prescription

+we have to either de-couple the angular momenta and sum, or use symmetry considerations of the
dipole moment—we get the same answer either way

For upper-state and lower-state broadening terms, we get a prefactor (and an likewise term for spin)
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