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Power System Protection

• The protection system and equipment is designed to maintain safe
operation of the grid and reliable service

• Must rapidly and automatically disconnect the faulty sections of the power
network

• Minimize the disconnection of customers

• Conventional power system protection design may not work for high
penetrations of inverter-based PV generation

• Traditional protection systems are designed for large fault currents from

synchronous and induction machines

• Short-circuit modeling and protection of
traditional systems is well established

• Increasing penetration of inverter-interfaced
resources underscore the need of inverter
models for short circuit studies
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Inverter-Based DG Impacts on Protection

• The legacy protection was not designed for the presence of

inverter-based DG

Common Protection Issues and Impacts:

✓ Reverse power flow and multiple injection points of fault

current

✓ Loss in coordination between protection devices

✓ Relay desensitization

✓ Transfer trip strategies

✓ Anti-islanding detection

✓ Open-phase detection

✓ Interconnection transformer winding configuration and

grounding

✓ Load rejection transient over-voltage
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100% Inverter-Based System Protection Challenges Sandia
Winn&
bloat:six

• 100% inverter-based systems present a new set of challenges
for protection

• Inverters do not provide significant current during faults
• Overcurrent protection schemes might not detect the fault

• Fault currents can look similar to motor starts or inrush

• With low fault currents, the fault currents are more sensitive to
generation dispatch, complicating coordination
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Inverter Short-Circuit Modei

• It is important to have accurate models of inverters for dynamic studies
and protection coordination

• Initial spike (-0.1ms) depends on filter cap, system impedance, and pre-fault
condition

• Transients during control actions, lasting 2-8ms

• Steady-state fault current based on the current limiter

• Models are challenging to develop because there are stark differences
between manufacturers, single vs. three-phase inverters, PV vs. energy
storage vs. grid forming inverters.
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Inverter Fault Characterization

• Best way to fully characterize inverters for all
transient and steady-state time scales is through
testing (Sandia's DETL)

• Grid-following inverters generally have very low fault
current contributions (1.1-1.2 of their rated current)

• Grid-forming energy storage inverters can deliver 2x
the rated current for about 60 seconds
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Testing Inverter Models Using HIL

• Validating inverter models to
hardware results

• Opal-RT power HIL testing

using same feeder and faults,
testing models compared to
hardware inverter response
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Inverter Protection Challenges

Other Protection Challenges Include:

1. Inverters do not provide zero sequence or negative
sequence fault currents (depending on the controls)

2. Inverters have no inherent inertia, and their transient
responses vary depending on the controls. How does this
impact Power Swing Blocking and Out-of-step Tripping
functions?

3. Inverter fault current response depends on the pre-fault
conditions (e.g. power output level, power factor, etc.), so
they have to be included in the models and analysis
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Inverter-Based System Protection Sandia
National
limb*

• For 100% inverter-based system protection:
• Accurate short-circuit current models are needed

• New protection schemes are required to detect faults

• Sandia is developing protection solutions for inverter-based
systems:
• Holistic approach to address the challenges of distribution system and

microgrid protection under high penetrations of inverter-based DER

• Using fast communication and time-
synchronized measurements from
multiple sensors for communication-

based or wide-area protection

• Develop fault location algorithms for
microgrids and distribution systems
with high DER penetration and tested
algorithms in simulations and HIL
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Protection PHIL Lab at Sandia

• Power hardware — inverters, PV

simulator, grid-forming inverters,

energy storage, controllable loads,

Home/building/network EMS

Communication Fault Location

Setting and
Commands

SEL 351

• Communication: NS3,

DNP3, Modbus, 61850,

C37.118 UDP

• Cyber security detection

and mitigation schemes

SEL 751

Grid Simulator
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• Demonstrated adaptive protection

• Grid-connected, off-grid and microgrid,

and networked microgrid reconfiguration
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Adaptive Protection

• Protection settings may have to be modified when conditions change
(reconfigurations, load transfers, islanding of a microgrid, etc.)

• As an example, high penetrations of PV
may require different protection settings Circurt Breaker
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Adaptive Protection Demonstration

Demonstrated in HIL, communication

with relay to change setting groups

0.4

0.2

0

%I

—Gm.; ' Point —

Or..929.1Pdal 

Group Change
Point .11

2 22

Group 1

3

Group 2 I

2 22 3 32

Controller Adaptive Protection: 

PMU Measurements

Relay Custom Logic: 

ommunicati
With Relay

Sandia
National
limb*

Controller

12



Cyber Security for Protection Sandia
National
laboratodas

• Cybersecurity is a key challenge to making protection settings adaptive

• Cybersecurity of power system protection in general is very critical to the
reliability of the bulk power system.

• Presently, the prevalent measures being incorporated include firewalls,
intrusion detection systems (IDSs), and security gateway devices (SEL 3620)

• Improve cyber security posture of the protection with layered approach, pair
device-level solutions with network defense such as intrusion detection
systems (IDSs) and firewalls

• Working with SEL to detect cybersecurity vulnerabilities and improve security
on their gateways
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Fault Detection and Location Algorithms

• We are testing the impact of high DER
penetration on existing utility fault location

methods and developing new communication-

assisted fault location algorithms

• Sandia report in collaboration with ORNL:
"Microgrid Fault Location: Challenges and
Solutions"
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Optimal Protection Design

• Optimal placement of protective devices for
improved reliability and reconfiguration

• Protection design constraints also feeds into
design of networked microgrids

• Working on optimal protection design for
PNM feeders based on historical outage data
for frequency, outage time, customers
impacts, etc.
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DC Microgrid Protection

Investigating protection

system design for DC

microgrids to address
protection-related challenges
of integrating DC microgrids

to distribution systems
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Conclusions Sandia
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• At high PV penetrations, or especially 100% inverter-based systems,
conventional protection modeling and design is not sufficient

• Accurate short-circuit current models are needed

• New protection schemes are required to detect faults

• Sandia is developing Advanced Protection for Inverter-Based Systems

• Holistic approach to address the challenges of distribution system and
microgrid protection design with high penetrations of inverter-based DER

• HIL demonstration with inverters, relays, and communication is important
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