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Challenge )

Comparing field data (e.g. simulated and measured results) is not always straightforward.

Sensor mesh Computational mesh

network to Greenland to simulate surface

measure surface IC?-Sheet elevation f

elevation f_* experiments and _
models N_mesh nodes in

N, sensors in mesh y

mesh x

We are seeking global (e.g. ||f,(x) - f,(v)||,) and local error metrics between the two fields.

> Different number of data points of measured (N,) and computed (N,) fields

> Different meshes
> Experimental data is noisy and incomplete

* Price S.F. et.al. “An ice sheet model validation framework for the Greenland ice sheet” Geosci. Model Dev., 10, 255-270, 2017.
$ Leng W. et.al. “Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation” J. Comp. Phys. 274 (2014) 299-311 3




Current Methods )

Interpolation and Projection

» Applied manually and operate on a case-by-case basis
* How to filter noise? How to fill incomplete data?

* How to treat irreqular geometries e.g. non-convex domains?

Question

Is there a more systematic way to compare data fields involving
different meshes, noise, missing points and irregular geometries?




Hypothesis ) i
Comparing data fields of sizes N, and N_can be performed in a
unified wavelet domain using their large spectral modes.

Global Metric (e.g. Objective function for calibration)

g:”fe(x)_fs(y)nz P, and ¢ _are of the same size M

l wavelet transform and encode the information
. contained in f_and f
g =llp.—oll,

Local Metric (e.g. error field for validation)

¢_can be used to map the field f on the mesh x using an inverse
wavelet transform then the error field can be computed as:

h=|f.(x)— f,(x)]
S T




Background on Wavelets )
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Wavelets are commonly used as bases to represent multi-resolution functions.
(e.g. sines and cosines in Fourier analysis)

We use Alpert multi-wavelets* that adapt to irregular meshes and geometries
Wavelet transform can be cast as a matrix-vector product:

Wavelet Matrix Raw Data Transformed data
¥ & RN fE€RN w E\IRN

A T TR
\,‘.'. ‘e j;

4t

w € IR" —» Compressed version of f

= |wW| € R" —— Data wavelet spectrum
Truncate the

amplitude of w [ ]

e.g. Donoho universal
threshold

| |

The wavelet matrix ¥ depends on the mesh representing the data f

Forward wavelet transform: w=y.f ——» wand @ = |W| ¢ is used is the global
comparison metric

~yY
A

Inverse wavelet transform: f=W".w

The inverse wavelet transform selectively reconstructs an approximate version of the data f

* Alpert B., Beylkin G., Coifman R., and Rokhlin V. Wavelet-like bases for the fast solution of second-kind integral equations.
SIAM Journal on Scientic Computing, 14(1):159-184, 1993.

SWinzip v1.0: http://www.sandia.gov/~mnsallo/SWinzip/swinzip-v1.0.tgz 6




Field Data Representation using Wavelets (@) .

Consider the function: f=48[sin(2x x)—sin(2xy)]-sin(2xx)-52 on [0,1]x[0,1]
represented on three meshes:

M, oM,

EY.

102 40
S
Q = Il 30 |
2 — M, 2 ||/Can we map f, on M, using:
£ 101 M oM, g £ IRV
s = 107 folM)=W"-w, 1
c [}
3 _ ~ 3 0
2 00l \m_\ g 10 Yes, but the signs of W,
o /x““‘%\_ % a
o _ _—— = 20 o | have to be adjusted
© The wavelet amplitudes ¢ but the wavelet coefficients w : :
= B0 . : i| consistently with ‘¥,
S are pretty much the same... have inconsistent signs
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Wavelet mode Wavelet mode 7
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Mapping Field Data using Wavelets )

« Consider a function f, represented on a mesh M,
- We would like to estimate the map f, of f on another mesh M,

- We form the combined mesh M =M, & M,
 We compute the wavelet matrix ¥ corresponding to the mesh M

The idea is to map f, on the combined mesh M
then pull f, corresponding to M, c M

 Let f be the map of f, on M

f=w"w

« We form the initial guess of w from w,=%¥-f,
 |terate on the coefficients in w:
1.Flip the sign of a coefficient in w
2.Compute fi= Ww,
3.If ||f11—f1||decreases go to 1.

4.1f ||If,,—f.|l increases, flip the sign of the coefficient back then go to 1.
8




Mapping Field Data using Wavelets

Challenge:
This mapping procedure is expensive for large
meshes :

* Field data represented on large meshes can be
compared by subdividing the mesh into smaller
pieces and comparing
> Divide and conquer
> Can be run in parallel
> The full mapping and error fields can be

re-assembled like a puzzle

« Data subdivision also results in higher accuracy
» Fewer features per subdivision block
~ Lower wavelet orders
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Results: Global Comparison Metric rh) de

\

f=48-sin(6mx)-sin(5ny)-sin(4mx) Defined on [0,1]x[0.1]
. . . 1 b X )

g=48sin(2n x)—sin(2xy)]-sin(2x x)—52 o with irregular holes

h=5:[9-sin(2ax)—7-sin(2xy)]-sin(2mx)—52

__llog @4/ VN,)—log (@/ VN, I,
* Vn-max[log (g ,/vVN,)]
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Results: Error Field ) e,
q,=48-[sin(2nx)—sin(2xy )—sin(2.5nz)]-sin(2rx x)-sin(2.5xz)—52
q,=38-[1.1sin(2mx)—0.9sin(2xy)—1.05sin(2.5nz)]-sin(2x x)-sin(2.5mz)—52

Defined on [0,1]x[0,1]x[0,1] with irregular holes, using two different meshes

q, plotted on Mesh 1 q, plotted on Mesh 2
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Results: Error Field h) s

q1 — g2 analytical q1 — g computed by wavelet transform
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Application:

Full-field Validation of X-specimen tension test

100

50

Y (mm)
o

-50

Experimental setup used for the X-specimen tension
test. Note that in the load frame, the specimen was

oriented horizontally.
X (mm)
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Application° Green strains from X-specimen tension test () i
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Application: Green Strains Wavelet Spectra )
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Resampling the raw FEA and experimental data induces attenuation of some

high-frequency modes i.e. smoothing in the fields.
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Application: Green Strains Error Fields i) e
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processed FEA field minus processed FEA field (with raw FEA field minus raw FEA field minus
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Summary ) .

* We implemented Alpert wavelets to systematically compare measured and
computed data fields.

* Alpert wavelets map field data to a given mesh and produce error fields
bypassing collateral effects of common interpolation methods.

* Implementing wavelet mapping using mesh subdivision in enhances its
performance and accuracy.

* We implemented Alpert wavelets to compare field data in toy problems and
Green strains obtained from X-specimen tension test.

> Good agreement between analytical and estimated error fields.
~ Alpert wavelets allow a more systematic estimation of the error field

SWinzip v1.0: http://www.sandia.gov/~mnsallo/SWinzip/swinzip-v1.0.tgz (SWinzip v2.0 coming up soon!)
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THANK YOU!!
Questions?




