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confirmation measurements.

Focus Area/Crosscutting Area: Nuclear Instrumentation and

Nuclear Security Policy
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Outline
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• Arms control context: what is needed?

• What is the proposed technology?
- Time-encoded imaging background

— Anti-symmetry verification concept

- Fast neutron proof-of-concept measurements

• How do we improve the imaging system given operational
constraints?
— Size vs time vs performance

— Simulation and modeling

• Summary
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Arms control context
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• Current & previous treaties counted delivery vehicles as a measure of
the number of deployed nuclear weapons

• At a small number of weapons and for stockpile dismantlement,
individual warheads may need to be verified

• In a future arms control treaty, how do we authenticate a warhead?

• The monitoring party needs confidence that an item truly is what it is
declared to be

• The host country needs confidence that sensitive information about
the item remains secure
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• In a future arms control treaty, how do we authenticate a warhead?

• The monitoring party needs confidence that an item truly is what it is
declared to be

• The host country needs confidence that sensitive information about
the item remains secure Measurement system

Radius = r;
Reference 

>1 
Thickness = t;

values Volume = t * r2
Flux = f —> mass > M

L

Accountable
item

IB

1
PASE. /

5



8 Arms control context
NUCLEAR SCIENCE and SECURITY CONSORT!.

template verification Ati„;Sza„A

• In a future arms control treaty, how do we authenticate a warhead?

• The monitoring party needs confidence that an item truly is what it is
declared to be

• The host country needs confidence that sensitive information about
the item remains secure

Accountable item

Measurement
system

IB

Reference
data

The
comparison

-> PASS/FAIL

6



Arms control context
NUCLEAR SCIENCE and SECURITY CONSORTIUM

RA .T e-fh
Security

• In a future arms control treaty, how do we authenticate a warhead?

• The monitoring party needs confidence that an item truly is what it is
declared to be

• The host country needs confidence that sensitive information about
the item remains secure

• Can we decrease the amount of information behind information
barriers while still maintaining confidence?
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Arms control context
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Security

• In a future arms control treaty, how do we authenticate a warhead?

• The monitoring party needs confidence that an item truly is what it is
declared to be

• The host country needs confidence that sensitive information about
the item remains secure

• Proposed solution: complementary comparison (turn one image into
its complement) at all times

Image(T) Image(X)c NULL
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A

Stoat from
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A simple example Atoigs0477,11

• The simplest possible
imaging system with this
property: half mask, half
aperture.

• The fraction of total count
rate coming from A and B
is unknown at any given

Sitfl angle.

Ta

• In this example, the
location (and shape) of the
boundary between regions
is not revealed.
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2-D coded mask modulates the source
as it rotates; the modulation pattern can
be unfolded to a 2-D image
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Fast neutron system
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• HDPE mask
- 1.9 cm x 1.9 cm x 10.16 cm

elements

- 150 elements/layer

- 17 layers

- 1 m diameter

• 2.54 cm x 2.54 cm stilbene
detector

• Hamamatsu PMT

• 2 sets of measurements
— Small Cf-252 source

— Pu02 hemispherical shells

1 1
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Counts in the detector as a function of mask rotation angle
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Constraints and Limitations

• How can we improve the system?
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• Need to balance tradeoffs in

Size

o Smaller system is easier to work with

o Smaller size worsens efficiency and time to detection, or the
system angular resolution

Measurement time
o Shorter measurement time is preferred

o Shorter measurement times require a larger detector; this
either worsens the system angular resolution and
performance or drives the entire system to a larger size

Performance
o Need sufficient angular resolution for imaging

o Better angular resolution either drives the system size up or
the detector size down, decreasing efficiency and increasing
measurement times
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Constraints and Limitations
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• Improve imaging performance by
changing the shape of the mask
and detector

• Concern: edge effects in a
cylindrical mask cause partial
attenuation instead of the
desired open/closed effect

Mask

Sources

Detector

sooci

Detector Counts vs. Angle
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Constraints and Limitations
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National Nuclear Security Administration

• Improve imaging performance by
changing the shape of the mask
and detector

• Concern: edge effects

• Potential solutions: spherical
mask, spherical detector,
hexagonal mask elements

Mask

Sources

Detector
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Constraints and Limitations

• Can the system be smaller?

• How does that impact angular resolution and efficiency?
•
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Constraints and Limitations

• Can the system be smaller?

• How does that impact angular resolution and efficiency?
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Constraints and Limitations
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• Can the system be smaller?

• How does that impact angular resolution and efficiency?
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Constraints and Limitations
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• Simulations and modeling in
process to study the tradeoffs
between size and angular
resolution/performance given a
time constraint and a
discrimination task

• Mask diameters of 100 cm, 76
cm, 50 cm

• Different number of mask
elements (angular resolution):
150, 80, 60

• Different size detectors
(efficiency): 2.5 cm, 3.8 cm, 5 cm
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Summary and Future Work
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• Built and tested a fast neutron time-encoded system for
verification

• Simulations to understand constraint space
— Size vs time vs performance

• Building a gamma-ray system
— Tungsten alloy, smaller system

— Designed with Patricia Schuster at UM

— Will be completed this summer for measurements at Sandia
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