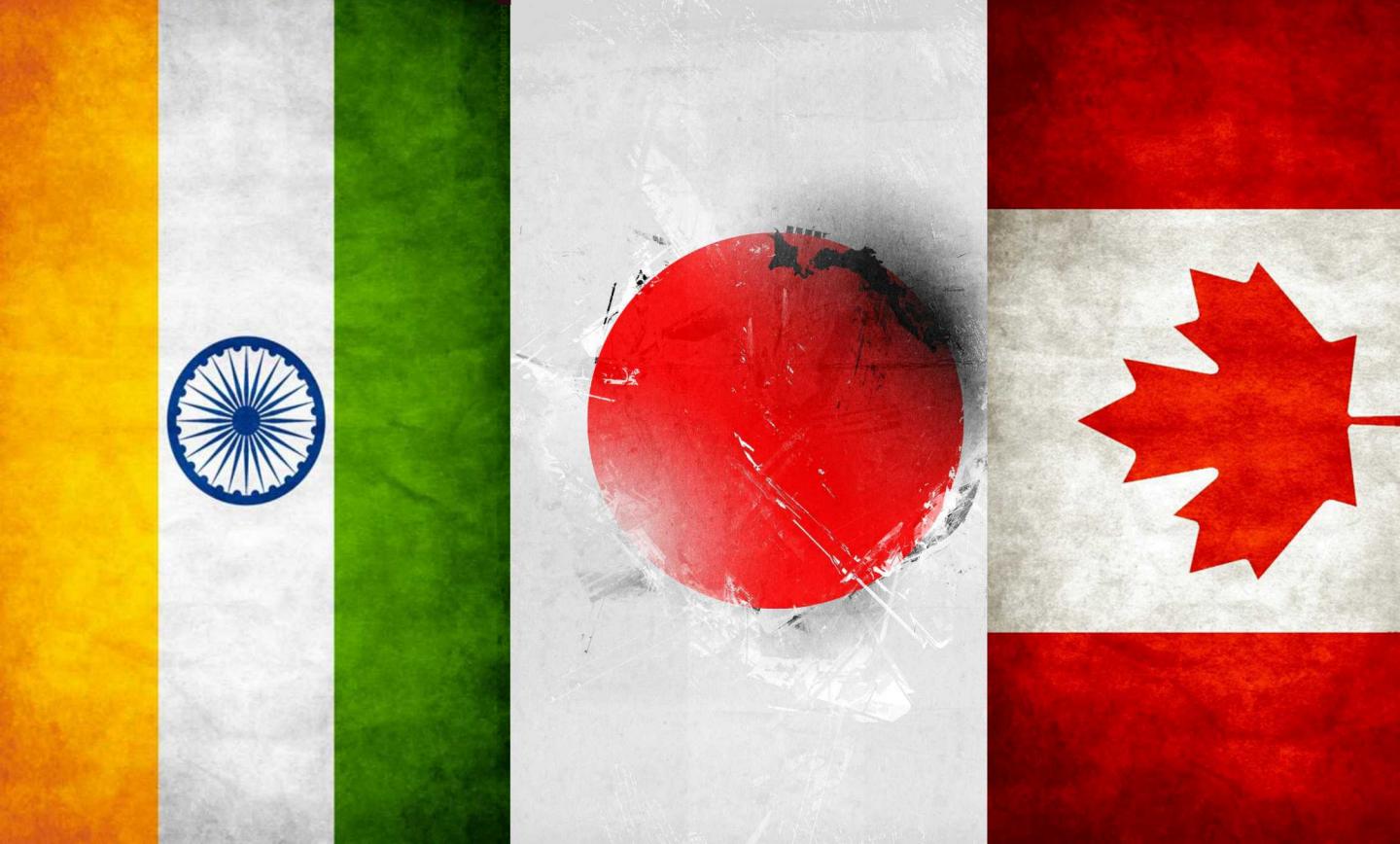
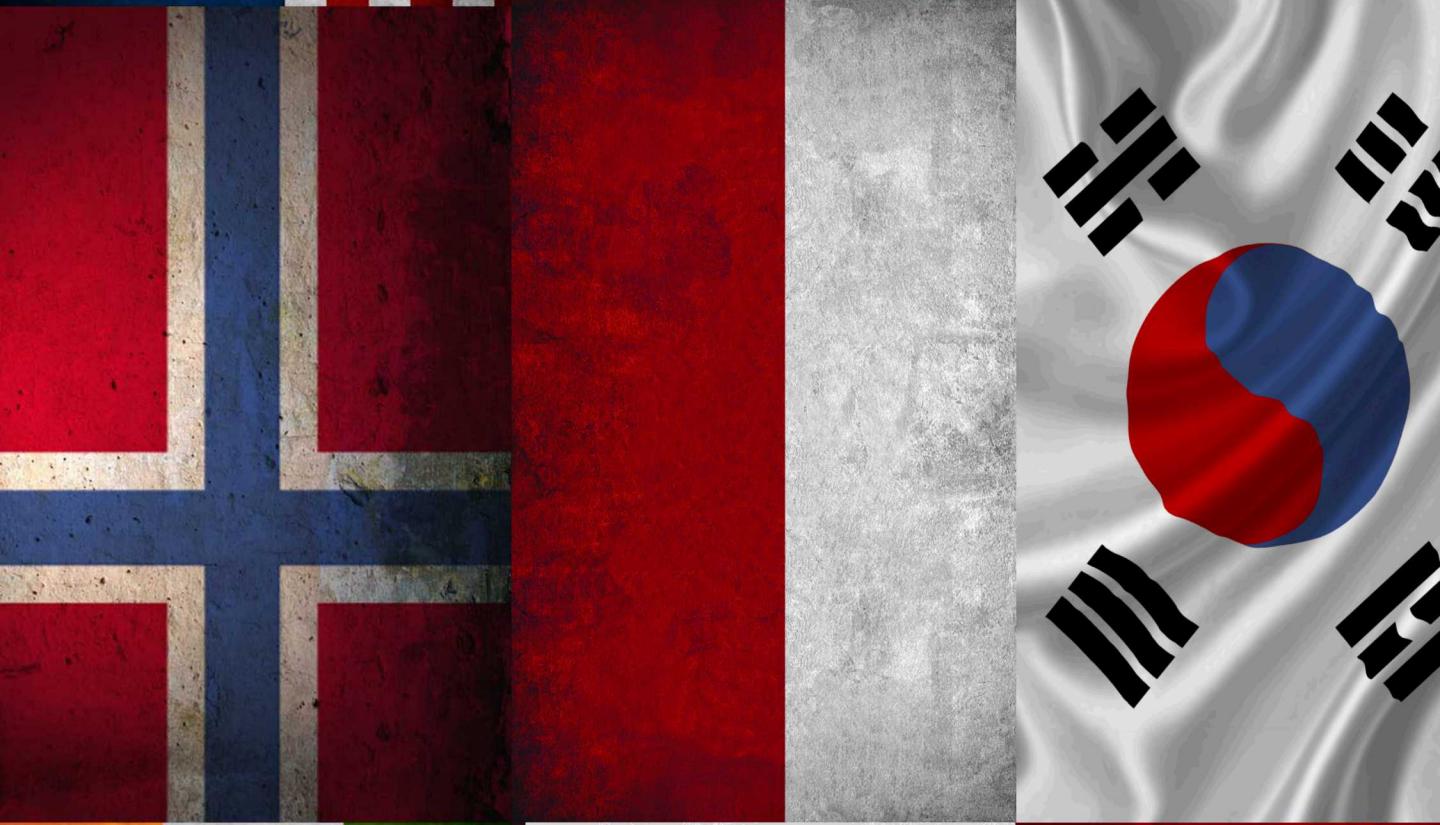


The Impact of Protactinium on the Proliferation Resistance of Thorium Power

PRESENTED BY

Eva C. Uribe, Systems Research and Analysis Group

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

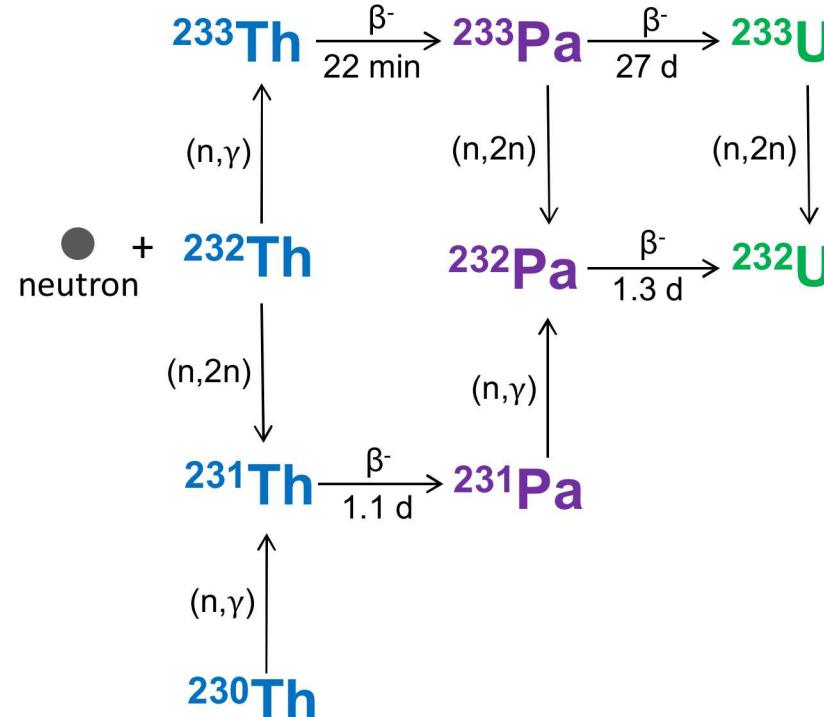


Overview of the thorium fuel cycle

58 Ce cerium	59 Pr praesodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
90 Th thorium	91 Pa protactinium	92 U uranium	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrencium

Advantages and disadvantages of nuclear power from thorium

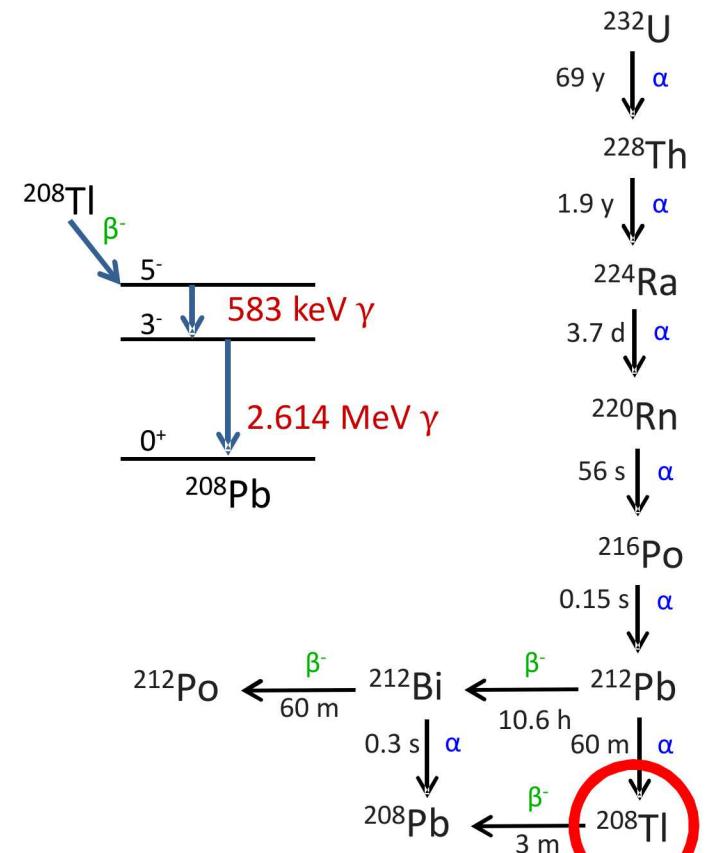
Advantages	Disadvantages
<ul style="list-style-type: none">• Thorium (potentially) more abundant than uranium• ThO_2 has superior stability• Nuclear properties of ^{232}Th and ^{233}U are more favorable for fissile material production and use• Lower production of minor actinides• Produces less plutonium• ^{233}U can be down-blended with ^{238}U• More “proliferation resistant”	<ul style="list-style-type: none">• Thorium has no fissile isotopes• ^{233}Pa intermediate absorbs neutrons• ^{231}Pa is long-lived• ThO_2 fuel more difficult to manufacture and dissolve• THOREX reprocessing technology still under development• Remote handling required for fuel fabrication using ^{233}U• ^{233}U is a proliferation concern

Nuclear properties of ^{233}U


Isotope	^{233}U	^{235}U	^{239}Pu
Critical mass of metal sphere (kg) ^a	7.47 98.25 wt% ^{233}U with 4.2 cm Be reflector	20.8 93.5% ^{235}U with 5.1 cm Be reflector	8.39 4.9 wt% ^{240}Pu with 3.69 cm Be reflector
Isotopic purity and reflector			
Spontaneous fission rate ($\text{s}^{-1} \cdot \text{kg}^{-1}$) ^b	0.5 Isotopic purity	0.6 1% ^{234}U , 5.5 % ^{238}U	2.5×10^4 6% ^{240}Pu

^aPaxton, H. C. and Pruvost, N. L., Critical Dimensions of Systems Containing U-235, Pu-239, and U-233. LA-10860-MS. Los Alamos National Laboratory, 1986 revision

^bKang, J. and von Hippel, F. N. U-232 and the Proliferation Resistance of U-233 in Spent Fuel. *Science and Global Security*, 2001, 9, 1-32


Reason 1: They produce less weapons-usable plutonium compared to conventional light water reactors

Reason 2: Thorium fuels will contain a ^{232}U that decays to ^{208}Tl , which emits highly-penetrating γ rays

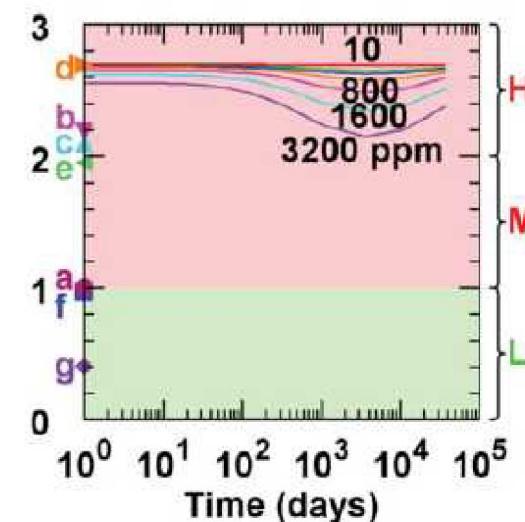
IAEA Significant Quantity

$^{233}\text{U} = 8 \text{ kg}$

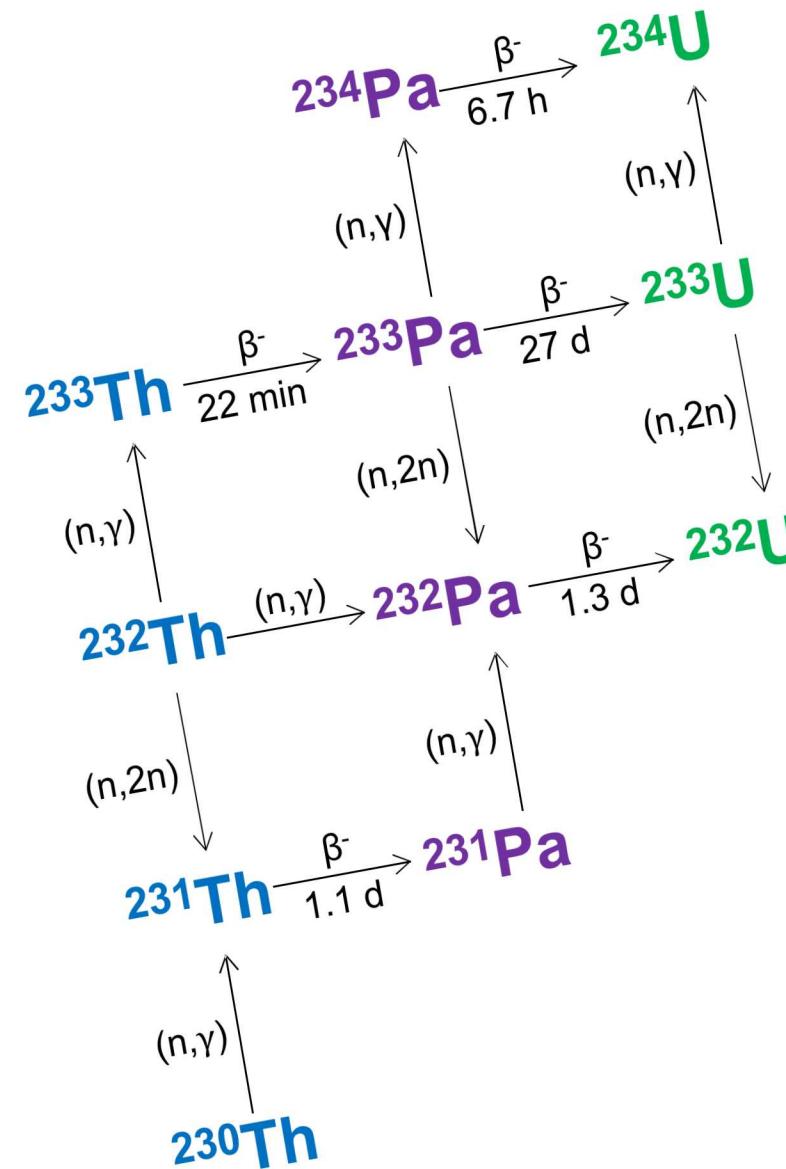
How can we compare the *attractiveness* of nuclear materials?

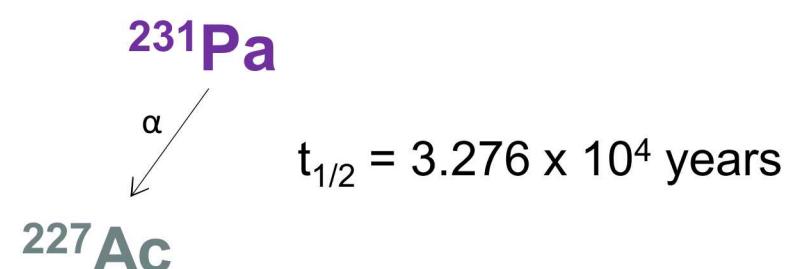
$$FOM = 1 - \log_{10} \left[\frac{M}{800} + \frac{Mh}{4500} + \frac{MS}{6.8} + \frac{M}{50} \left(\frac{D}{500} \right)^{1/\log_{10} 2} \right]$$

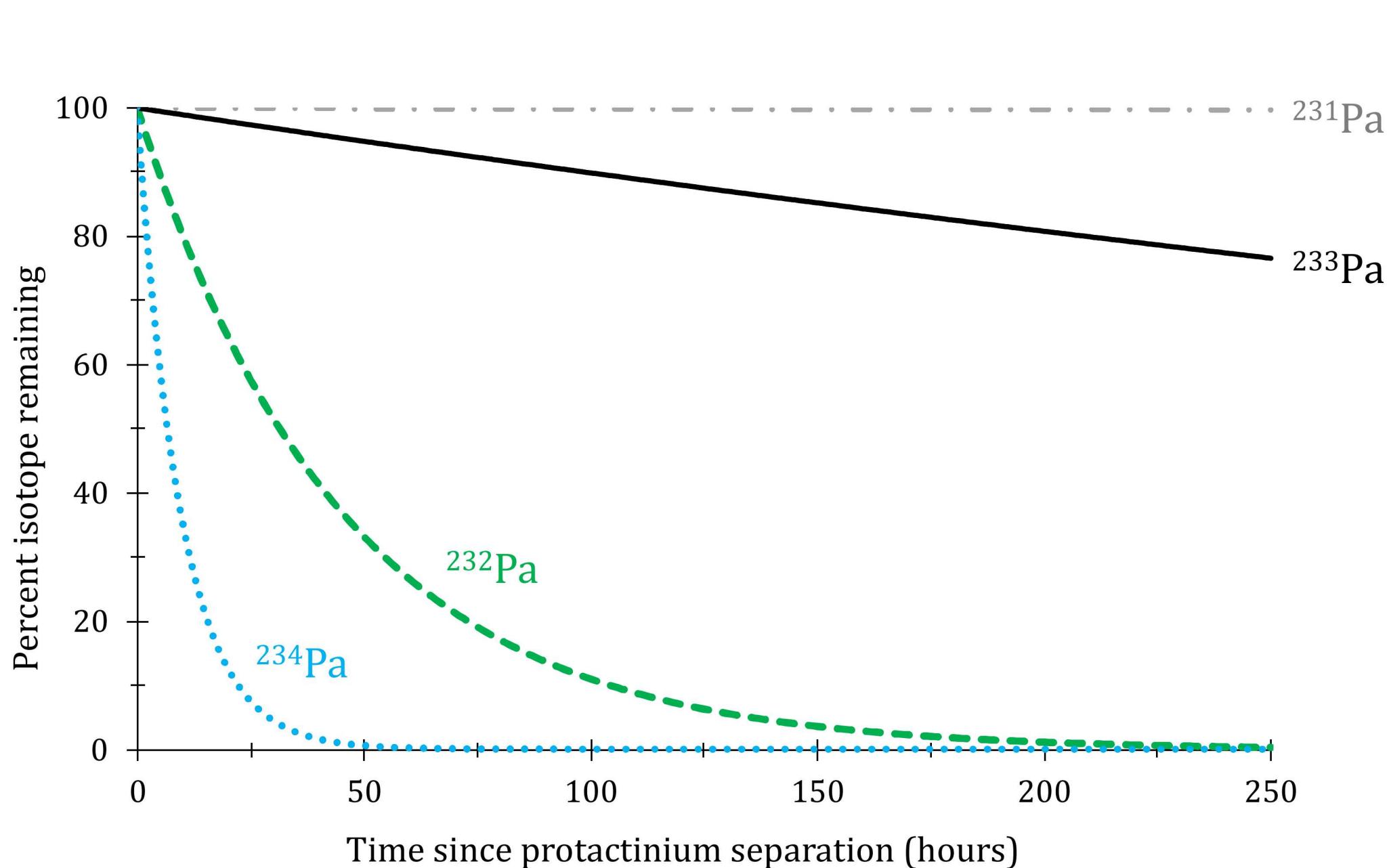
↓ ↓ ↓ ↓


Bare critical mass of metal (kg) Heat (W/kg) Spontaneous Neutron Rate (n/s·kg⁻¹) Dose Rate (rad/h)

d) ²³³U (10 ppm ²³²U)


b) HEU (93%)


c) ²³⁷Np


e) Weapons Grade Pu

Chemical reprocessing can further reduce the ^{232}U concentration

The unique chemistry of protactinium

“Pa(V) in aqueous solution is rarely present as a single species, but rather exists as a mixture of several complexes or hydrolyzed species.

“...may yield **ambiguous or mutually contradicting** interpretations...”

“It exhibits an extraordinarily high tendency to undergo hydrolysis, to form polymers, and to be adsorbed on almost any available surface.”

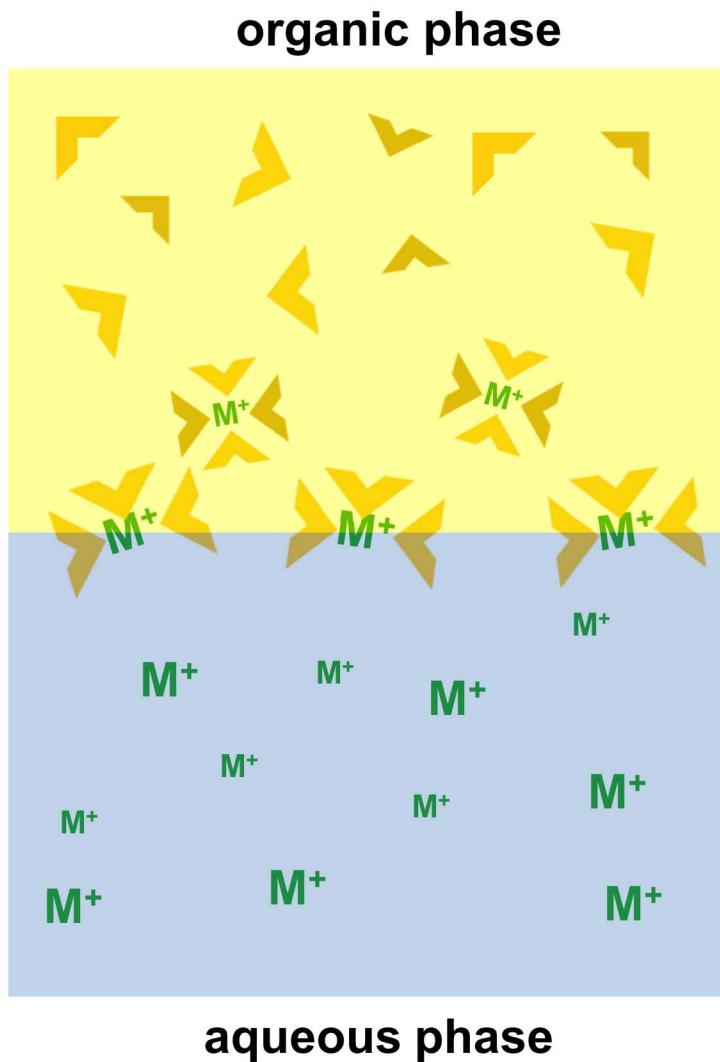
“...many reports of **erratic and irreproducible behavior** of protactinium as well as for its frustrating habit of disappearing in the hands of inexperienced or unwary investigators.”

“The known world supply of the isolated elements and its compounds did not exceed one or two grams until the late 1950s.”

“Laboratory work with protactinium has been largely abandoned...”

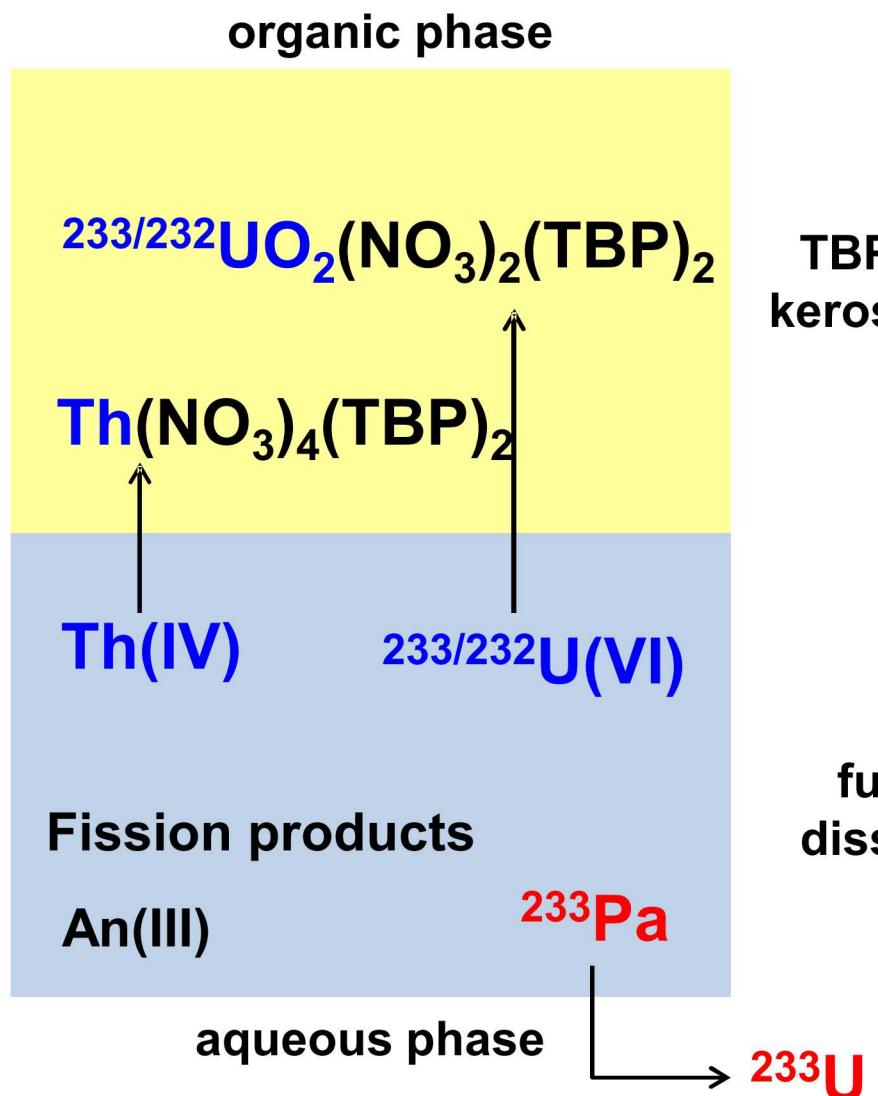
“The **mystery and witchcraft** mostly came from protactinium’s confusing chemical properties, not quite truly actinide, yet not quite transition metal.”

The unique chemistry of protactinium

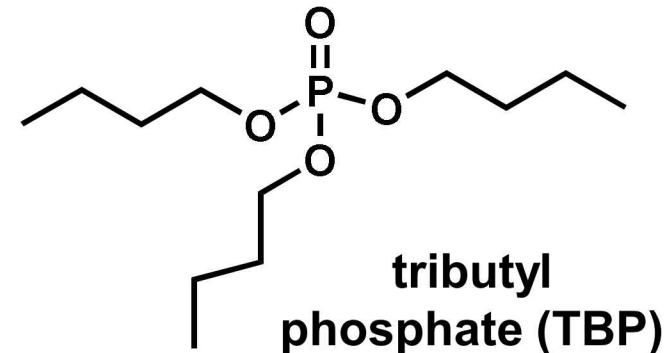

58 Ce cerium	59 Pr praesodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
90 Th thorium	91 Pa protactinium	92 U uranium	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrencium

		Element	Oxidation state*	Ionic form
Actinium	$[\text{Rn}]6\text{d}^17\text{s}^2$	Th	+3, +4	Th^{4+}
Thorium	$[\text{Rn}]6\text{d}^27\text{s}^2$	Pa	+3, +4, +5	PaO^{3-}
Protactinium	$[\text{Rn}]5\text{f}^26\text{d}^17\text{s}^2$	U	+3, +4, +5, +6	UO_2^{2+}
Uranium	$[\text{Rn}]5\text{f}^36\text{d}^17\text{s}^2$	Np	+3, +4, +5, +6, +7	NpO_2^+
		Pu	+3, +4, +5, +6, +7, +8	PuO_2 , PuO_2^+ , PuO_2^{2+}
		Am	+3, +4, +5, +6	Am^{3+}

*Most stable oxidation state in aqueous solutions bolded.


Cotton, S. *Lanthanide and Actinide Chemistry*; John Wiley & Sons, Ltd: Sussex, 2006.

What happens to protactinium during spent fuel reprocessing?

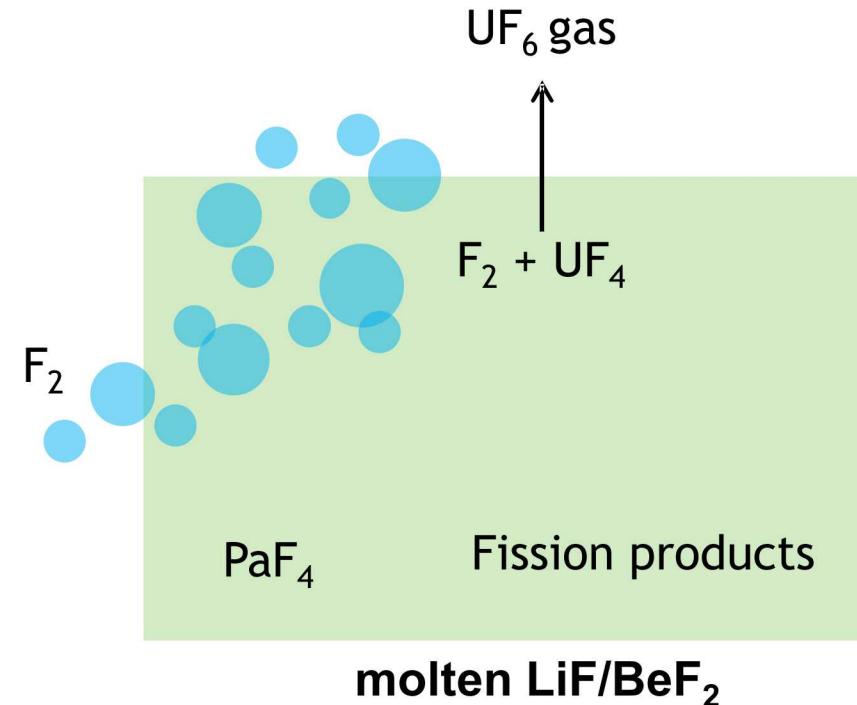
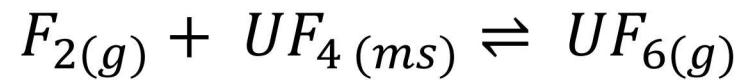


Solvent Extraction
(liquid-liquid extraction)

Aqueous reprocessing: THOREX

TBP in
kerosene

fuel rods
dissolved in
 HNO_3



^{233}U

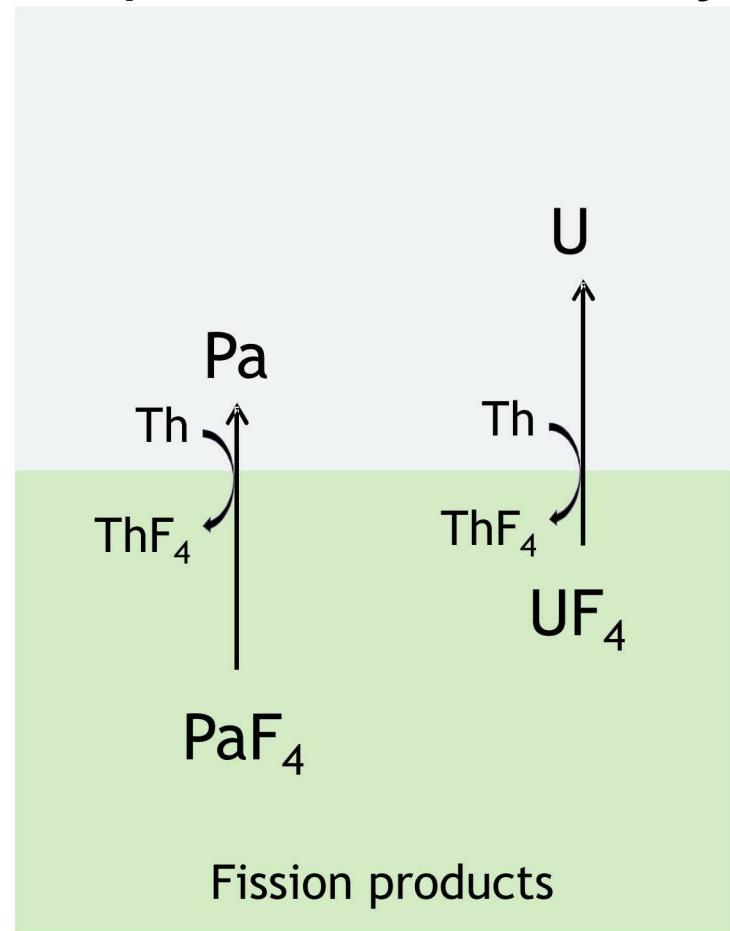
Molten salt reprocessing

Where is the protactinium?

Fluoride volatility

- UF_4 and PaF_4 dissolved in molten salt (LiF/BeF_2)
- Fluoride gas bubbled through molten salt
- UF_4 oxidized to volatile compound, UF_6
- PaF_4 stays dissolved in molten salt?

Molten salt reprocessing


Where is the protactinium?

Liquid bismuth extraction process

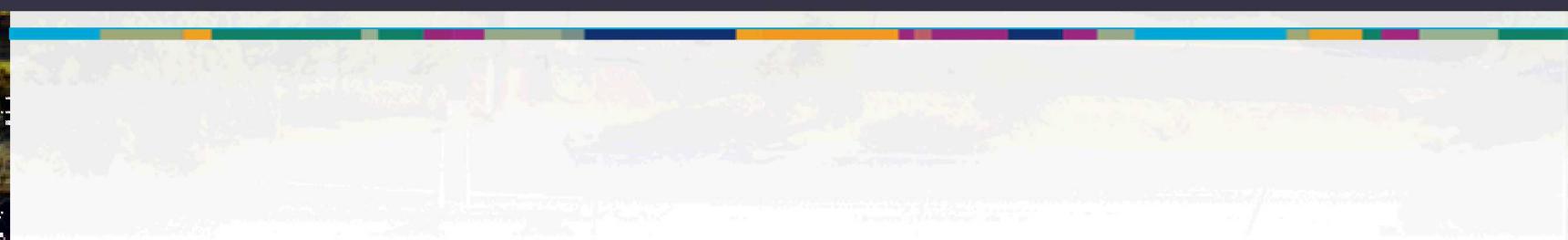
- Designed to separate fission products from U and Pa
- UF_4 and PaF_4 dissolved in molten salt (LiF/BeF_2)
- UF_4 and PaF_4 reduced to U and Pa metal, and co-extracted into liquid bismuth.
- Protactinium is less-readily reduced than uranium

Liquid thorium/bismuth alloy

W. R. Grimes, "Molten Salt Reactor Chemistry," *Nuclear Applications & Technology*, 8 (1970) 137-155

M. E. Whatley, et al., "Engineering Development of the MSBR Fuel Recycle," *Nuclear Applications & Technology*, 8 (1970) 170-178

M. W. Rosenthal; P. R. Kasten, R. B. Briggs, "Molten Salt Reactors - History, Status, and Potential," *Nuclear Applications & Technology*, 8 (1970) 107-117

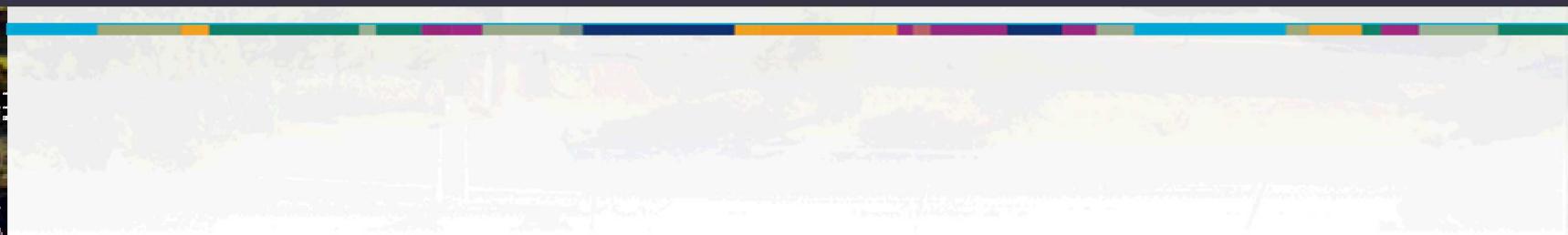

Summary & Conclusions

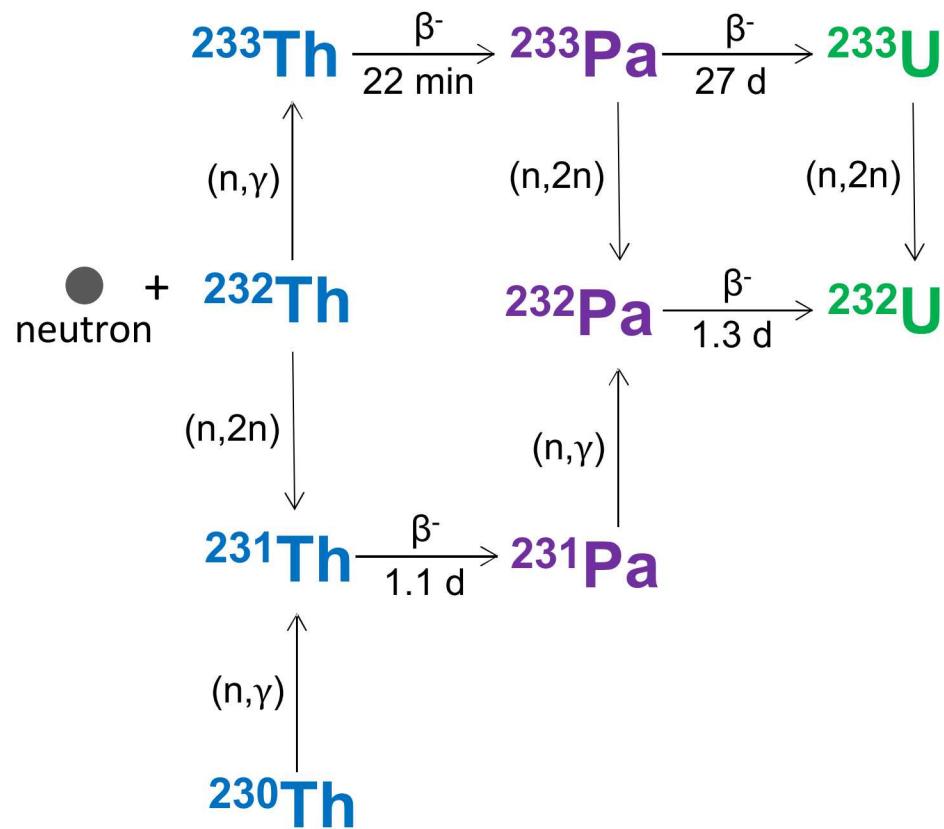
1. Thorium fuel cycles are not inherently proliferation resistant
 - Depends on reprocessing involved
2. Protactinium has distinct and unusual chemistry
 - During spent fuel separations, the partitioning of U and Pa may be hard to avoid
3. Several unanswered questions:
 - How much Pa is produced in different fuel cycles?
 - Does Pa tend to behave more like lanthanide fission products or more like uranium during separations?
 - Should the International Atomic Energy Agency monitor or safeguard ^{233}Pa in addition to ^{233}U ?

Thank you for your attention

Questions or comments?

Backup Slides




TABLE 1. LEADING THORIUM FUEL CYCLES

Fuel Cycle	Country/ Developer	Reactor
Multi-stage fuel cycle—continuous recycle of ^{233}U	India	Heavy water reactor (Stage 1), sodium-cooled fast reactor (Stage 2), advanced heavy water reactor (Stage 3)
Once-through or continuous recycle in pressurized water reactor	ThorEnergy (Norway), WASB (USA)	Pressurized water reactor
Continuous recycle of ^{233}U in MSR	Thorcon (USA-Indonesia), Flibe (USA), China	MSR (thermal fuel salt)

Molten salt projects (liquid fuel)

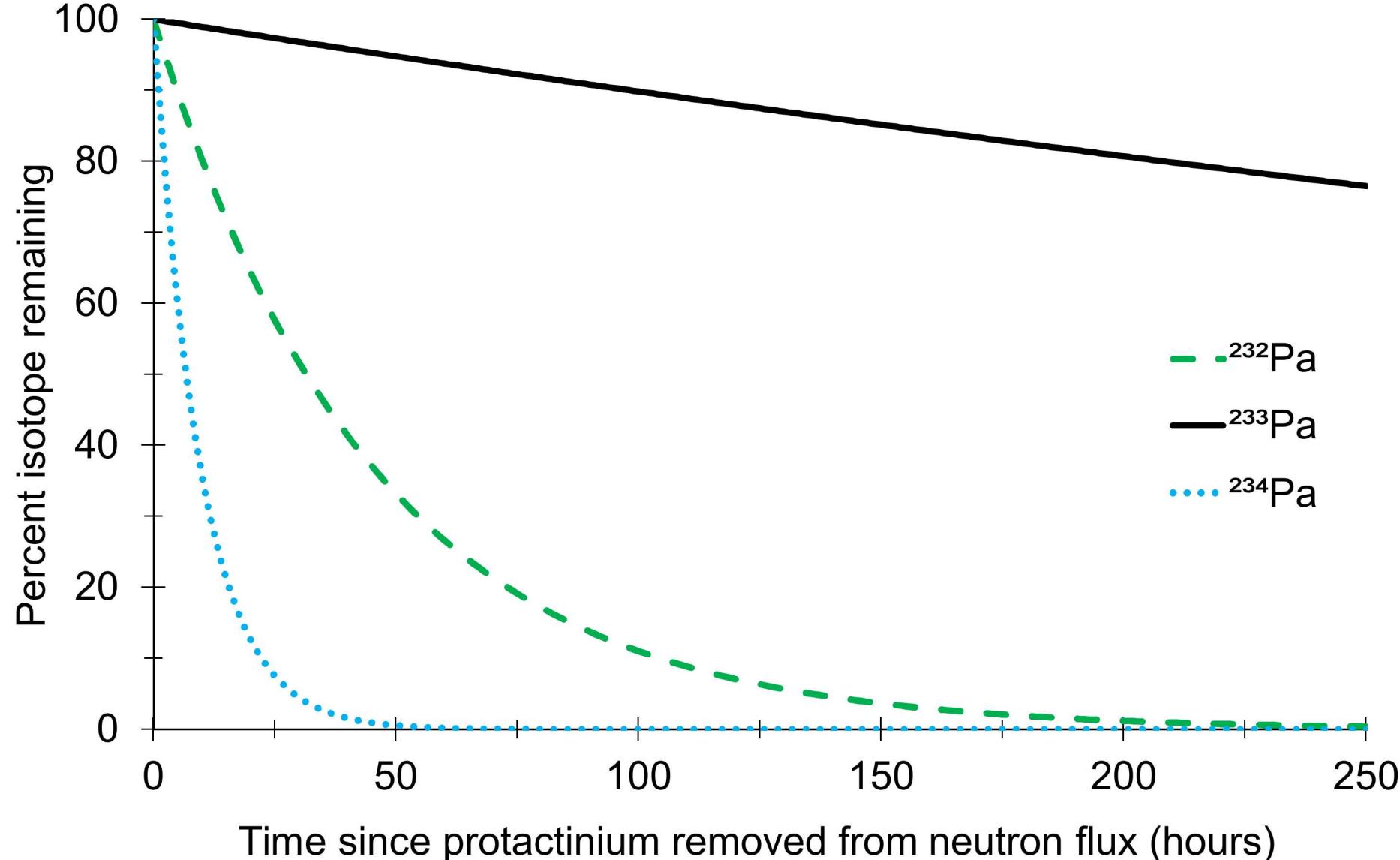
Name	Developer	Power, MWt	Fuel/carrier/moderator
Thermal Spectrum Liquid Fuel MSRs			
Thorium Molten Salt Reactor, Liquid Fuel (TMSR-LF)	Shanghai Institute of Applied Physics (SINAP), China	395	$\text{ThF}_4\text{-}^{233}\text{UF}_4\text{/LiF-BeF}_2\text{/graphite}$
Integral Molten Salt Reactor (IMSR)	Terrestrial Energy, Canada and the United States	400	$\text{UF}_4\text{/fluorides/graphite}$
ThorCon Reactor	ThorCon International, Singapore	557*2	$\text{UF}_4\text{/NaF-BeF}_2\text{/graphite}$
Liquid-Fluoride Thorium Reactor (LFTR)	Flibe Energy, United States	600	$\text{ThF}_4\text{-}^{233}\text{UF}_4\text{/LiF-BeF}_2\text{/graphite}$
FUJI-U3	Japan	450	$\text{ThF}_4\text{-}^{233}\text{UF}_4\text{/LiF-BeF}_2\text{/graphite}$
Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental and Test Reactor (AMBIDEXTER)	Ajou University, Korea	250	$^{233}\text{UF}_4\text{-ThF}_4\text{/LiF-BeF}_2$
Transatomic Power MSR (TAP)	Transatomic Power, United States	1 250	$\text{UF}_4\text{/FLiNaK/SiC clad ZrH}_{1.6}$
Compact Used fuel BurnEr (CUBE)	Seaborg Technologies, Denmark	250	$\text{SNF/fluorides/graphite}$
Process Heat Reactor	Thorenc, United States	50	$\text{UF}_4\text{/NaF-BeF}_2\text{/Be rods}$
Stable Salt Thermal Reactor (SSR-U)	Molten Energy, United Kingdom	300-2 500	$\text{UF}_4\text{/fluorides/graphite}$
Fast/Epithermal Spectrum Liquid Fuel MSRs			
Molten Salt Fast Reactor (MSFR)	SAMOFAR, France – EU – Switzerland	3 000	$\text{ThF}_4\text{-UF}_4\text{/LiF-}$
Molten Salt Actinide Recycler and Transformer (MOSART)	Kurchatov Institute, Russia	2 400	$\text{TRUf}_3\text{ or ThF}_4\text{-UF}_4\text{/LiF-BeF}_2\text{ or NaF-}^{7}\text{LiF-BeF}_2$
U-Pu Fast Molten Salt Reactor (U-Pu FMSR)	VNIINM, Russia	3 200	$\text{UF}_4\text{-PuF}_3\text{/LiF-NaF-KF}$
Indian Molten Salt Breeder Reactor (IMSR)	BARC, India	1 900	$\text{ThF}_4\text{-UF}_4\text{/LiF-}$
Stable Salt Fast Reactor (SSR-W)	Molten Energy, United Kingdom	750-2 500	$\text{PuF}_3\text{/Fluorides}$
Molten Chloride Fast spectrum Reactor (MCFR)	TerraPower, United States		U-Pu/Chlorides
Molten Chloride Salt Fast Reactor (MCSFR)	Elysium Industries, United States and Canada	100-5 000	U-Pu/Chlorides
Dual Fluid Reactor (DFR)	Dual Fluid Reactor, Germany	3 000	U-Pu/Chlorides

Name	Developer	Power, MWt	Fuel/carrier/moderator
Solid Fuel MSRs (all thermal spectrum)			
Molten-Salt Reactor with Micro-Particle Fuel (MARS)	Kurchatov Institute, Russia	16	TRISO-coated LEU/FLiBe/Graphite pebble bed
Advanced High Temperature Reactor (AHTR)	ORNL, United States	3 400	Coated U particles in blocks or plates/FLiBe/Graphite
Small Advanced High Temperature Reactors (SmAHTR)	ORNL, United States	125	Coated U particles in blocks or plates/FLiBe/Graphite
Pebble Bed – Fluoride Salt-Cooled High Temperature Reactors (PB-FHR)	UC Berkeley, MIT and UW, United States	242	TRISO-coated LEU/FLiBe/Graphite pebble bed
Thorium Molten Salt Reactor, Solid Fuel (TMSR-SF)	SINAP, China	395	TRISO-coated U-Th/FLiBe/Graphite pebble bed
Indian High Temperature Reactor (IHTR)	BARC, India	600	TRISO-coated U-Th/FLiBe/Graphite pebble bed

Isotope	Half-life	Decay Mode	Source
^{231}Pa	3.28×10^4 y	α	^{235}U decay chain
^{232}Pa	1.32 d	β^-	Neuron absorption by $^{231}/^{233}\text{Pa}$
^{233}Pa	27 days	β^-	Neutron absorption by ^{232}Th
$^{234\text{m}}\text{Pa}$	1.16 min	β^-	^{238}U decay chain

The unique chemistry of protactinium

58 Ce cerium	59 Pr praesodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
90 Th thorium	91 Pa protactinium	92 U uranium	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrencium


Element	Oxidation state*	Ionic form
Th	+3, +4	Th⁴⁺
Pa	+3, +4, +5	PaO³⁻
U	+3, +4, +5, +6	UO₂²⁺
Np	+3, +4, +5, +6, +7	NpO₂⁺
Pu	+3, +4, +5, +6, +7, +8	PuO₂, PuO₂⁺, PuO₂²⁺
Am	+3, +4, +5, +6	Am³⁺

Compounds and properties of Pa(V) species in selected aqueous media

HNO ₃ media	[Pa(OH) _n (NO ₃) _m] ^{5-n-m} , [Pa(NO ₃) _m] ^{5-m} anionic above 4M HNO ₃ , fair stability
H ₂ SO ₄ media	[PaO _x (OH) _{4-2x} SO ₄] ⁻ , PaO(HSO ₄) ₂ ⁺ , [PaO(SO ₄) _m] ^{3-2m} soluble in 2.5M
HF media	[PaF _m] ^{5-m} , [Pa(OH) _n F _m] ^{5-n-m} , HPaF ₇ ⁻ soluble in all concentrations

*Most stable oxidation state in aqueous solutions bolded.

Cotton, S. *Lanthanide and Actinide Chemistry*; John Wiley & Sons, Ltd: Sussex, 2006.

