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1. Surfactant-assisted nanoparticle self-assembly and optical coatings

o Synthesis of water-soluble nanoparticles
o Fabrication of robust ordered nanoparticle films
o Applications: optical coatings

2. Confined cooperative self-assembly of photoactive nanostructures

o Formation of 1-3D well-defined porphyrin nanocrystals
I o Unique optical and electronic properties

o Photocatalytic synthesis

3. Pressure induced nanoparticle assembly

o Pressure induced phase separation in atomic and mesoscales
o Pressure induced nanoparticle coalescence and fabrication
o Pressure induced nanoparticle optical coupling
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1. Surfactant-Assisted Nanoparticle
Self-Assembly and Optical Coatings
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Optical Coatings: Opportunities and Challenges

Sputtering and CVD has produced high performance of optical and
semiconductor applications, but this performance comes at a significant cost,
impacting budget, logistics, and environmental, safety, and health areas.

Disadvantages:
• High temperature
• High vacuum
• Capital equipment
• Toxic precursors
• Limited work place

Challenges:
1 • Low temperature

+ • Ambient conditions
1 • Simple process
• Green chemistry1
• ln-field application

Motivation: A simple and mild coatings process is needed for applications for
delicate, large foot print, in-field coatings.
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oft Self-Assembly to Functionalize Nanoparticles to
abricate Robust Nanoparticle Coatings

Soft self-assembly is a simple, economical process, enables the development of unique optical,
electronic, and magnetic nanoparticle thin films in mild conditions, with architectures and properties
unattainable by any other processing methods (CVD, sputtering, etc).

Metal nanoparticles
e.g., Gold, silver, etc.

Semiconductor nanoparticles
e.g., PbSe, Ge, CdSe etc.
Metal oxide nanoparticles

e.g., Ti02, Si02, Zr02 etc.
Maptetic nanoparticles
e.g., FePt, FeMn04, etc.

1, surfactant
• 2, lipid,

3, block copolymer
 ►

es
Controlled size and shape

Water-soluble &
biocompatible
nanoparticles

Engineering Process
-Dip-coating
-Ink-jet printing
-Pen writing
-R-to-R impriting
- more

Tunable coating properties:
-Optical property (n, etc)
-Electroni property (a, etc)
-External field activated
property alteration

-Hydrophobic

—111110.

60 nm

Robust, self-assembled
nanoparticle films



Synthesis of Nanoparticles

(1) Nucleation and growth at high temperature

Semiconductor nanocrystals:
•CdSe, CdS, etc.
•PlaS, PbSe, etc.
Magnetic nanocrystals
•FePt, FeMn04, Fe304
Perovskite nanocrystals:
•Cs4PbBr6

...

• .45C ■

Murray, CB et al. Annu. Rev. Mater. Sci. 2000, 30, 545-610.

(2) Synthesis of metal nanocrystals

*HAuCI4
CH3(CH2)nSH
(CH3(CH2)7)4N+Br-
NaBH4

* Brust, M., et al. J. Chem. Soc.-Chem. Comm. 7, 801 - 802 (1994).

100 nm

Organic ligand
hydrophobic

Core

Yin, Y., et al., Nature, v.437, 664-670, 2005.

Metal nanoparticles
•Au, Ag, Pt, etc.
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Formation of Self-Assembled Nanoparticle Micelles

Addition of
H2 Ošs u rfactant

Organic layer stabilized
nanocrystals in oil

a. Nanocrystals

Formation of oil
in F120 H.-emulsion

Surfactants/lipids

Evaporation of oil Evaporation of oH

fr ti _ # t4 t4 Hi li tA t4 P4 11

-CI

Evaporation of oil by heat or vacuum Nanocrystal-micelles
in water

b. Building block

Primary organic iayer

dp

Seco n dory surfactant laver



Self-Assembly of Gold Nanoparticle-Micelles
from Water Phase



Nanoparticle Micelles with Different Shapes
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Nanoparticle-micelles Provide Flexible Surface
Chemistry for further Self-assembly.

Precursor (e.g., Silica - Surfactant Interaction)

R EOni_yRE0).H30±hd. yX-...w16+
where (l = hydrophilic precursors (e.g.,silicate; 6 = framework

charge, surfactant head groups = charge groups, EO =

ethylene oxide, R = alkyl chain)



Highly Order Nanoparticle/Silica Films

Scanning Electron Microscoriy image
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Advantages:
• Mild conditions.
• More stable in inorganic framework. (>200°C)
• Uniform and continuous without cracking.
• Compatible with standard fabrication process.
• Robust material: metal, semiconducting, magnetic, etc
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In-situ Grazing Incidence Small-Angle X-ray
Scattering Ensure Long Range Order
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GISAXS at a synchrotron source
enables us to follow the
development of long-range thin-film
structure in real time (high intensity
beam) during self-assembly

X-ray beam

2D CCD Detector

Thin-film sample

Unit cell of rhombohedral space
group Ram showing 111 planes 

Relationship between rhombohedral
and fcc structures(a= 60° )

Fan et al. Langmuir, 24 (19) 10575-10578, 2008.

Sandia
National
Laboratories



Nanoparticle Coatings with Tunable Optical Property

Self-assembly method was extended to different nanoparticles to tune film property.

Low

Index

Medium

Index

High

Index

Material Measured index n Measured Absorption k

Porous Silica (Acid Catalyzed)

Porous Silica (Base Catalyzed)

Dense Silica

1.18-1.25

1.19-1.25

1.4

<0.15 (out to 10 ,um)

<.01 (out to 10 ,um)

To Be Measured

TiO2 (Acid Catalyzed)

TiO2 (Base Catalyzed)

CdSe

1.4-2.4

1.7-1.8

1.7-1.8+

<0.15 (out to 10 ,um)

<.01 (out to 7 µm)

<0.15 (out to 10 ,um)

Gold

Ge

FePt

PbSe

1.8-1.9+

2-4

-2.2+

-2.2+ -.1

<0.15 (out to 10 ,um)

Under Development

-.1

* Theoretical Values



Nanoparticle Coatings for Near Infrared Reflectors

Quarter wave stacking of self-assembled nanoparticle films for near infrared reflectors, overcomes
the harsh conditions from conventional processing (CVD, sputtering, etc) with improved
functionality.

SEM image of quarter wave stacking

of TiO, and SiO, reflector

Functionalization of optical coatings
Hydrophilic
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Surfactant-Assisted Cooperative
Self-Assembly of Nanoparticles
into Active Nanostructures
Wenbo Wei,' Feng Bai,l,* and Hongyou Fan2,3,4,*

1, surfactant
2, lipid,
3, block copolymer
 ►

Tunable size, shape, composition

Engineering Process
-Dip-coating
-Ink-jet printing
-Pen writing
-R-to-R impriting
- more

—I

Tunable property



2. Confined Cooperative Self-Assembly of
Photoactive Nanostructures

Surfactant assisted micelle confinement of non-covalent interactions:

o Hydrophobic-hydrophobic interactions,
o Tr-Tr stacking,

o Metal-ligand coordination.

Amphiphilic surfactant

NaOH
Y. Liu, et al. Nano Lett., 2019.
K. Bian et al. Nature Communicitons, 2018.
K. Bian et al. MRS Adv, 2018, 3 (45), 2757-2762.
N. Zhang, et al. Nano Lett., 2018, 18 (1), 560-566.
D. Wang, et al. ACS Nano, 2018, 12 (4), 3796-3803.
J. Wang, et al. Nano Lett., 2017, 17 (11), 6916-6921.
J. Wang, et al. Nano Lett. 2016, 16, 6523-6528.
F. Bai, et al. Adv. Mater. 2016, 28, 1989-1993.
Y. Zhong, et al. Nano Lett., 2014, 14, 7175-7179.
Y. Zhong, et al. ACS Nano, 2014, 8 (1), 827-833.
F. Bai, et al. Nano Lett., 2011, 11, 3759-3762.
F. Bai, et al. Nano Lett., 2011, 11, 5196-5200.
F. Bai, et al. Chem. Commun., 2010, 46, 4941-4943.
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Wh Porphyrins

Biomacromolecules (e.g., chlorophyll, heme, etc.) with well-defined size and chemistry are essential
pigments in many biological energy transduction processes in plants, algae, and bacteria including
photosynthesis (absorb light, transfer energy, etc), water splitting, etc.

Cluster orl
pigment molecules
embedded
in membrane

Gersnum
(stack of
ihylallcoids)

Thy#akoid
membrane

Chloroplast

Chlorophyll Structure and Function

Powicri Eck.r yesn, Inc FLEItshmg as Rarriarnn t.ummnq.

CH, CHO chlorophyll b

CFI H CH3 in hiefophyll a

eLceL
Hoe— C 7—CH1 —CH,

CFIp

'Porphyrin ring
(II g ht-ab SIQrbi ng
"befiCfr

molecule)

Hydrate/bon tail
ICH atoms not Shown)

https://www.pinterest.com/katidavis86/structure-and-function/



Inspired by biological nature, many synthetic molecular building blocks such as porphyrins, organic
dyes, etc have been demonstrated for new optical and electronic applications in areas of molecule
electronics, photovoltaics, and sensors.

Well-defined size and chemistry: Applications in energy
conversion/storage and sensors:

o Well-defined size and surface chemistry,
o Optical and electrical activity due to the o Photocatalysts,

conjugated aromatic rr system, o Sensors,
o Covering wide range of visible spectrum. o Phototherapy,

o Dye sensitized solar cells.

Driving forces for self-assembly:

o Hydrophobic-hydrophobic,
o Tr-Tr stacking,

o Metal-ligand coordination,

o Ionic interactions.

ZnTPyP
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Porphyrin Used in Our Research
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Hierarchically Structured Porphyrin Nanocrystals

K. Bian et al. Nature Communicitons, 2018.
K. Bian et al. MRS Adv., 2018, 3 (45), 2757-2762.
D. Wang, et al. ACS Nano, 2018, 12 (4), 3796-3803.
N. Zhang, et al. Nano Lett., 2018, 18 (1), 560-566.
J. Wang, et al. Nano Lett., 2017, 17 (11), 6916-6921.
J. Wang, et al. Nano Lett. 2016, 16, 6523-6528.
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F. Bai, et aL Adv. Mater. 2016, 28, 1989-1993.
Y. Zhong, et al. Nano Lett. 2014, 14, 7175-7179.
Y. Zhong, et al. ACS Nano, 2014, 8 (1), 827-833.
F. Bai, et al. Nano Lett. 2011, 11, 3759-3762.
F. Bai, et al. Nano Lett. 2011, 11, 5196-5200.
F. Bai, et al. Chem. Commun., 2010, 46, 4941-4943.
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Hierarchically Structured Porphyrin Nanorods
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F. simulated crystal structure, viewed along the nanowire.
Crystal structure: Hexagonal R-3 (148) a=b= 33.110, c= 9.273; a=P=y=120

J. Wang, et al. Nano Lett., 2017, 17 (11), 6916-6921. J. Wang, et al. Nano Lett. 2016, 16, 6523-6528. F. Bai; et al. Nano Lett.
2011, 11, 3759-3762; Nano Lett. 2011, 11, 5196-5200.



Nitrogen Sorption Isotherms of Porphyrin Nanocrystals

a: Porous Disk
b: Hexagonal Rod
c: Tetragonal Rod

1 • 1 1 • 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
Relative Pressure (P/130)

Tetragonal rod

Hexagonal rod

Long wire

Porosity Surface area Pore size

(%) (m2/0 (nm)

34.3

20.1

16.1

371 0.81

327 0.79

294 0.78

Nano Lett. 2014, 14, 7175-7179.



SEM images of hexagonal nanorods and UV-spectra of the reaction solution at different reaction
times.
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J. Wang, et al. Nano Lett., 2017, / 7 (11), 6916-6921. J. Wang, et al. Nano Lett. 2016, 16, 6523-6528. F. Bai; et al. Nano Lett. 2011, 11,
3759-3762; Nano Lett. 2011, 11, 5196-5200.



Photocatalytic Synthesis of Hollow Pt Nanostructures

+ + + + + + + + + +
O0000000000 0 000 0000

[ 7ZnTPyP
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+ + + + + + + + + + + + + + + + + + + +
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O'-I
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4ZnTPyP-• + PtC142- —4ZnTPyP + Pt°
(radical anion)

J. Wang, et al. Nano Lett., 2017, 17 (11), 6916-6921. J. Wang, et al. Nano Lett. 2016, 16, 6523-6528. F. Bai; et al. Nano Lett.
2011, 11, 3759-3762; Nano Lett. 2011, 11, 5196-5200.



Photocatalytic Synthesis of Hollow Pt
Nanostructures through Porphyrin Nanocrystals
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3. Pressure Induced Nanoparticle Assembly

Nanoparticle interactions and coupling



Our Research - Nanoparticle Assembly under Pressure:
Mimic Manufacturing Processes - Embossing or lmprinting

Controlled pressure

Je Je
Embossing plate/mask

1 II 1 1 1 III
substrate

release

non
:•:•:•:•:•

Substrate

Features:
• Rapid
• Cost effective
• High throughput
• High fidelity



Pressure-Induced Assembly and Fabrication

An external pressure overcomes balanced interparticle interactions, enables

engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and

interparticle separation distance, and to fabricate new nanoparticle architectures.

Synchrotron
X-ray

pressure
1 11 111

TTTIT1i 
pressure

Diamond Anvil Cell (DAC)

Balanced Nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole

• Provide controlled pressure fields:
- Hydrostatic & uniaxial
- Controlled pressure range

• Allow in-situ structural and property characterizations
- Absorption, emission, etc.
- Crystal structure, phase transition, etc.
- Structural evolution with pressure
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Before Compression Starting Materials: Ordered
Spherical Gold Nanoparticle Arrays

Balanced particle interactions

Diamond anvil cell (DAC)

Ambient pressure

5 nm gold nanoparticles and fcc lattice (a = 10.4 nm)
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Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014); Wang, et al. J. Am. Chem. Soc.
133, 14484-14487 (2011); Wu H., Fan H., et al. Angew. Chem. lnt. Ed., 49, 8431-8434, 2010.
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After Compression Formation of 1D Nanowires

a

b

Diamond anvil cell (DAC)

Ambient pressure—• 13 GPa—••Ambient pressure

0.5 1.0 1.5 2.0
2 Theta (degree)

9

Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).
Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010. 0:o Sandia

National
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Bundles of 1D Nanowire Arrays

a

c

100 nm

d

Uniform length

L
----'

Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.
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Pressure Tuned 1D Nanostructures

!
v• 
•

V

',.*:

.

so. - ,

•
4t •
.- • 

•

. ...
*It;

•
•

• * ,..
A%

6 :* 50•A
dik

•

Wu H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.

Diameter
- 5 nm

Sandia
National
Laboratories



In-situ Synchrotron X-ray Studies of Nanoparticle
Assembly under Pressure

An external pressure overcomes specific interparticle interactions, enables

engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and

interparticle separation distance, and to fabricate new nanoparticle architectures.
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Pressure-Induced Nanoparticle Assembly Processes
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Pressure-Induced Formation of 3D Nanostructures

Interconnected 3D gold networks are formed depending on initial nanoparticle packing
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Pressure-Tuned Nanoparticle Interactions and Coupling
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CdSe Nanowires

B. Li, K. Bian, et al,
Science Advances
3, e1602916 (2017).



Optical Property of CdSe Nanowires
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Summary: Pressure-Induced Nanoparticle Engineering

(Chemical Review in press)
Pressure-lnduced Assembly presents a paradigm shift in engineering nanoparticle arrays:

• Allow precise, systematic, and reversible tuning of interparticle distance for interrogation of new

chemical and physical properties.

• Produce new mechanically stable 1-3D nanostructures, which is not possible for current top-down

and bottom up methods.
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ABSTRACT: Nanoparticle (NP) high pressure behavior has been extensively studied
over the years. In this review, we summarize recent progress on the studies of pressure
induced NP phase behavior, property, and applications. This review starts with a brief
overview of high pressure characterization techniques, coupled with synchrotron X-ray
scattering, Raman, fluorescence, and absorption. Then, we surveyed the pressure induced
phase transition of NP atomic crystal structure including size dependent phase transition,
arnorphization, and threshold pressures using several typical NP material systems as
examples. Next, we discuss the pressure induced phase transition of NP mesoscale
structures including topics on pressure induced interparticle separation distance, NP
coupling, and NP coalescence. Pressure induced new properties and applications in
different NP systems are highlighted. Finally, outlooks with future directions are discussed.
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