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Near-wall turbulence models in Large-Eddy Simulation (LES) typically approxi-

mate near-wall behavior using a solution to the mean flow equations. This approach
inevitably leads to errors when the modeled flow does not satisfy the assumptions

surrounding the use of a mean flow approximation for an unsteady boundary condi-
tion. Herein, modern machine learning (ML) techniques are utilized to implement

a coordinate frame invariant model of the wall shear stress that is derived specif-
ically for complex flows for which mean near-wall models are known to fail. The

model operates on a set of scalar and vector invariants based on data taken from
the first LES grid point off the wall. Neural networks were trained and validated
on spatially filtered direct numerical simulation (DNS) data. The trained networks

were then tested on data to which they were never previously exposed and compar-
isons of the accuracy of the networks' predictions of wall-shear stress were made to

both a standard mean wall model approach and to the true stress values taken from
the DNS data. The ML approach showed considerable improvement in both the ac-

curacy of individual shear stress predictions as well as produced a more accurate
distribution of wall shear stress values than did the standard mean wall model. This

result held both in regions where the standard mean approach typically performs

satisfactorily as well as in regions where it is known to fail, and also in cases where
the networks were trained and tested on data taken from the same flow type/region

as well as when trained and tested on data from different respective flow topologies.

I. Introduction

Thanks to the proliferation of both experimental and high-quality simulation data along with

the advent of modern machine-learning (ML) methods, the application of data science for the

development of models in fluid dynamics is of growing interest (e.g., [1]). A variety of approaches

have been proposed for using ML in modeling everything from Reynolds stress components [2, 3]

to unsteady pressure spectra [4] to near-wall turbulent structure [5]. The focus here is on using

ML methods to develop a near-wall model for use in Large-Eddy Simulation (LES). LES near-

wall turbulence modeling has received considerable attention in the literature [6] and typically
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reduces to some solution of the mean flow equations near the wall, from which a wall shear stress
is derived and applied as a surface boundary condition. This approach generally works well if the
near-wall LES grid cell is sufficiently large so that a local Reynolds average is appropriate [7].
The assumption is invalid when the near-wall mesh spacing is not much larger than the energy-
containing eddies of the near-wall turbulence being modeled. Even when this condition is met,
near-wall models tend to be less accurate when the modeled flow is separated from the wall.

The goal of this work is a general wall shear stress model that behaves at least as well as a
local law-of-the-wall boundary condition model in regions of simple attached boundary layers (as
it would have the same input data available), but that is better suited to predict the wall shear stress
vector (r„,,,) in regions where traditional law of the wall is known to fail. In order to be applicable
for all possible flow conditions, coordinate frames, wall surface orientations, and grid types, the
model must obey coordinate frame invariance and operate as a function of some set of scalar,
vector, and tensor features defined at only a single point off the wall.

Invariant theory is a widely used approach in continuum mechanics for development of con-
stitutive models. The theory can be used to derive general polynomial representations for tensor
functions in terms of a general set of independent variables, of scalar, vector, and/or tensor form
[8]. The number of tensors that form a so-called "integrity basis" is determined based on the par-
ticular flow features used as inputs to the model, as well as specific symmetries imposed by the
system. The resulting polynomial for T„,,, is called a representation. Based on the literature [9],
the system symmetries were identified for this application and the appropriate number of form-
invariant tensors were derived to build a polynomial representation (Sect. II). Note that a similar
approach was identified and used by Ling et al. [2] to develop a machine-learned non-linear RANS
model.

The invariant tensor basis formalism provides a framework for building a model that predicts
the wall shear stress given a specified set of input features. It remains to choose the input features
and then develop a mapping between these input features and the free parameters of the tensor
representation. For this we used filtered direct numerical simulation (DNS) data to train a neural
network that approximates this mapping. The DNS data were also utilized as the primary data
source for testing the derived model (Sect. III). The DNS data were filtered at typical LES scales,
the invariants that become the inputs to the representation were calculated from the features taken
from the filtered data, and specialized neural networks were trained to use those invariants to pre-
dict the DNS-determined "true wall shear stress vector. The specialized networks were Siamese
Multi-layer Perceptrons (S-MLP), which were chosen out of a need for a specific network archi-
tecture that could take multiple sets of inputs, operate on them separately, and then combine them
in the form of the tensor polynomial to achieve a vector output (Sect. IV).

The trained S-MLPs were tested on a subset of the data which was not used in the training
process, and the wall shear stress predictions were compared to the predictions that would be made
by a traditional law-of-the-wall boundary condition model given the same filtered state variables
(Sect. V).

II. Invariant Representation

The target output for the new near-wall model is the wall shear stress vector (Tu,,,), and thus the
chosen representation is a vector-valued polynomial function of input vectors and tensors, yet to be
specified. The geometry of the problem reveals that isotropy of the resulting functional form need
not be preserved in all directions, since the presence of the wall provides a "preferred direction,"
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that of the local wall unit normal vector. This is analogous to the situation of "transverse isotropy"
in solid mechanics, which is used to model, for example, constitutive relations for materials that
have a single preferred direction, such as unidirectional fiber composites [10, 11]. The particular
form of transverse isotropy used here is termed rotational symmetry, which results in a model that
is invariant to coordinate frame rotations about the preferred direction.

The equation for wall shear stress is written as a linear combination of a set of vector-valued,
transversely-isotropic functions of a set of input features:

Tw ,z = G(1)11,(1) + G(2)H,(2) + G(3)ll,(3) + + (1)

Here, the vector-valued functions are called the form invariants, and these are weighted by
scalar coefficients G(k). The form invariants are functions of the chosen input features, defined
subsequently. The coefficients, G(k), are functions of scalar invariants, A3, derived from those
same input features:

G(k) = T(k)(A1, A2, A3, Am). (2)

The input features were chosen as the filtered velocity vector U, the local filtered rate of strain
tensor (S), and the local filtered rotation rate tensor (11), at a near-wall grid point (or wall layer
interface point) along the direction of the wall-normal vector (n) associated with the location where

is evaluated.
Since the input features for the defined representation include one symmetric tensor (S), one

skew-symmetric tensor (S2), and two vectors (U and n), a total of 20 scalar invariants are defined
in the literature for rotational symmetry about n [10, 11, 12]:

= {S} 

A3 = {Si} ,

A5 = {S

=U • S U,

Ag =n • Sn,

All =n

A13 =n • cS 12,

A15 =n • cS 122,

A17 =n • S U,

=n • (U x Sn),

A2 = {S2} 

A4 = {S3} 

A6 =U • U,

Ag =U • et2,

A10 =n • U,

Al2 =n • S2n,

Am =n • (Sn x S2n),

A16 =n • S fin,

Alg =n • (U x S U),

A20 =n • f2 U,

(3)

where the signifies the trace and e is the permutation tensora.
The individual form-invariants that constitute the basis can be derived from the list of defined

scalar invariants via a lengthy process that can be found in Spencer [13]. That process is not
included here because the form-invariants are tabulated in the literature [10, 11, 12]. A total of

aAlso known at the Levi-Civita tensor, Eta k is unity for cyclic permutations of (1,2,3) for the indices and is -1 for
anticyclic permutations, e.g., €231=1 while 6213=-1.
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eight ll's are defined as,
rim = U,
H(3) = n,
= n x Sn,

11(7) = n x 17,

.(2) =
11(4) = gn,
11(6) = rtn,

11(8) = n x

(4)

Zheng [12] does not include II(8) in its list, but it is included in Zheng [1 1]. It may be that including
IP) means that this list of form-invariants is not a minimal basis, but it is not necessarily required
that this list be irreducible and therefore 11(8) was included in the analysis.

When put together, the representation takes the form,

Tw,i 
H(1)

Tw,2 = G(1) r1 1) + G(2)
Tw3

or, as a matrix operation,

Tw,1

Tw,2

Tw,3 = Tr(
1
1) Tr(2)

11fi l) LTV)

11
(1) Tr(2)

_ 3 113

1 + G(')
11(13)
r1 3) + + G(8)

111
8)

r1 8) (5)

11(3)3 11(3
8)

- G(1) -
_,,(3) fr(8) G(2)
ill
1-/ 3)

• • '1 
1-/ 8) G(3) (6)

1-r(3)
113 11(8)3

G(8)

The scalar coefficients are unknown and the functions (.F(k)) that relate them to the scalar invariants
are still to be determined A machine learning technique, specifically the Siamese Multi-layer
Perceptron (S-MLP) described in Sect. IV, is used to approximate these functions.

Before calculating the scalar invariants and form-invariants to be used in the representation, the
input features were nondimensionalized to ensure some generality to the model application and to
prevent the illogical combination of units within the functions. All quantities were normalized
using outer variables, specifically, the freestream velocity (U00), the freestream flow density (poo),
and a problem-specific characteristic geometric length scale (h). From here on, all uses of U,
n, S, and It have been nondimensionalized with those outer variables. We note that choice of
non-dimensionalization may limit or otherwise impact the accuracy of the models for flows that
are very different from the training data, for example, training on low-Reynolds number flow and
predicting at a higher Reynolds number. We do not examine these scaling issues in the present
work.

III. DNS Data, Filtering, and Pre-processing

Pseudo-LES data were produced from data from two different DNS datasets generated using
Sandia National Laboratories' structured, multi-block, finite volume code, SIGMA-CFD. Details
on SIGMA-CFD can be found in multiple previous publications including Arunajatesan et al. [14]
and Barone and Arunajatesan [1 5]. Two different flow cases—a backward facing step and a cavity
flow—were simulated via DNS. LES-style filtering was then applied to the DNS data to produce
pseudo-LES data for training and testing the ML models.
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A. DNS Details

The first data set considered was the DNS of the flow over a backward facing step at a Mach
number of 0.6. The DNS domain in the region upstream of the step was 9760 x 120060 x 660
in the streamwise x wall-normal x spanwise directions, respectively, where 60 is the boundary
layer thickness for a precursor RANS simulation from which a solution profile was extracted and
used for the inlet condition for the DNS. The selection of the length of 9760 for the domain extent
upstream of the step was based on a separate Mach 0.6 boundary layer simulation, and was the
distance at which the local boundary layer thickness reached a nominal value of (5 = 360. The
boundary layer was made turbulent well upstream of the step by using a synthetic turbulence
method that introduces disturbances within the boundary layer to excite transition to turbulence. In
the backward facing step simulation the boundary layer thickness was also --z-2, 360 at the step edge,
though slightly smaller due to the favorable streamwise pressure gradient produced by the presence
of the step. The wall-normal extent of the domain was tested to ensure that the domain boundary
was not adversely affecting the boundary layer growth, and although very little differences were
observed in the boundary layer with wall-normal domain dimensions ranging from 6060 to 120060,
data from the largest tested domain are used here. The step height was chosen to be h = 360,
resulting in hlõ ,--:-_,' 1 at the step. The Reynolds number, based on the velocity at the edge of the
boundary layer and h, was 6254 at the step edge. Downstream of the step, the domain extended
13060 in the streamwise direction, which was well beyond the flow's reattachment point, located
at about 2060 downstream of the step. A total of ~ 237 million grid cells were used in the domain
with horizontal and vertical grid stretching allowing for high concentrations of cells near the walls,
in the shear layer, and near the reattachment point. The backward facing step was first simulated
for 6.5 flow-through times with a time step of 1 x 10-9 s, followed by an additional 6 flow-through
times during which data were saved off to be used for training and testing the NN models.

Cavity flow was simulated using an upstream mesh and dimensions with the same streamwise
and spanwise dimensions as that used for the backward facing step simulation (9760 x 660) as well
as the same upstream Mach 0.6 boundary layer. The vertical extent of the domain was reduced
to 12060 with a sponge layer starting at 6060 to damp out pressure waves produced at the down-
stream cavity lip. The upstream boundary layer grew, without the presence of a favorable pressure
gradient, to a height of 360 at the cavity edge. The cavity was designed with a depth of D = 360,
identical to the step, and thus the Reynolds number at the cavity lip was identical to the number at
the step edge. The cavity had a streamwise length of L = 960, thus producing a cavity aspect ratio
of L/D = 3. Downstream of the cavity, the domain extended 10960. A total of ;--,-, 134 million grid
cells were used and again vertical and horizontal grid stretching were used to cluster cells near the
walls, in the shear layer, and in the cavity. The cavity simulation also used a time step of 1 x 10-9 s
and was run for 12 flow-through times to remove transients prior to an additional 4.5 flow-through
times during which data were saved for later use.

B. Pseudo-LES Filtering

The DNS data were filtered down to a resolution that would be similar to that used for a wall-
modeled LES of the same flow case. In this way pseudo-LES data were produced that could be
used as the input data for the near-wall model, while the filtered DNS wall shear stress vector
became the labels to be predicted by the model.

For the backward facing step DNS data, the domain was broken into two regions which were
both treated independently for training and testing individual S-MLP ensembles as well as being
used in a single, comprehensive data set to train and test a third network. The first region was from

5 of 24

American Institute of Aeronautics and Astronautics



-"wwitiittArfQ-'• .

Figure 1: Density gradient contours from the DNS simulations of the backward facing step (top)
and the cavity flow cases (bottom). The upstream and recirculation regions of the backward fac-
ing step flow are bounded by the red and green boxes, respectively, while the upstream, cavity,
and downstream regions of the cavity flow case are bounded by the red, yellow, and blue boxes,
respectively.

well upstream of the step 5460 upstream) to the step edge, while the second was the detached
recirculation region defined along the step face and along the wall below the step downstream to

4760 downstream of the step (Fig. 1). For the cavity flow DNS data, three separate domains
were defined as the upstream region (similar to that defined for the backward facing step), the
downstream region (extending downstream from the downstream lip of the cavity), and the cavity
itself, composed of both the upstream and downstream cavity wall faces as well as the cavity floor.

In the region upstream of the backward facing step two sets of filter widths were used. The filter
halfwidths of these sets corresponded to 10 x 4 and 20 x 8 DNS grid points in the x (streamwise) and
z (spanwise) directions, respectively. This corresponded to nominal pseudo-LES control volume
sizes of x f , [20 + 2A+ z f ] [80, 50] and [20 x f , 2A+ z ] [170, 110], respectively, where A+ is thef , + , 
inner-scaled filter halfwidth in the ith direction and the friction velocity was taken as the mean
over the upstream region. These scales are within the nominal range of scales recommended by
Larsson et al. [6] for wall-modeled LES. Pseudo-LES control volume centers were defined in the
streamwise and spanwise directions based on multiples of the respective filter widths resulting in
a grid of 62 x 19 and 30 x 9 points in the x and z directions, respectively, for the 10 x 4 and
20 x 8 filter sizes, respectively. A simple box filter operation was applied, consistent with the
common approach in finite-volume based LES simulations where the cell control volume implies
the filtering operator. Four different nominal wall-normal distances to the center of the first wall-
normal cell were used and the filtering process was applied from the wall to twice that nominal
distance. The four nominal heights were y+ = [30, 60, 100, 150]. For each control volume defined
by each filter width set and each nominal wall-normal cell center distance, the filtered velocity
components and the gradients of the filtered velocity were calculated and then used to compute
the scalar and form-invariants given in equations (3) and (4). Collectively this resulted in nearly
5800 usable pseudo-LES grid cells that could be used in the upstream region of each individual
DNS frame. A total of 50 independent DNS frames for the backward facing step flow were used
for this work. The frames were separated in time by a minimum of 0.51h 1 Uco although most were
separated by 2.55h 1 Uo„.
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In the detached, recirculation region behind the step, only a single filter set was used in the
wall-parallel directions along with three wall-normal cell center distances. The single filter width
set was defined with halfwidths of 4 x 4 DNS grid points and was applied both on the step face and
along the "flow' below the step. This led to 300 usable control volumes in the pseudo-LES grid
along the step face (15 x 20 in the y x z directions, respectively) and 2980 usable volumes in the
grid defined along the floor (149 x 20 in the x x z directions, respectively). The three wall-normal
cell center heights were defined based on the idea that an LES grid for this flow would likely be
defined based on choosing a desired wall-normal resolution in the region downstream of the point at
which the boundary layer reattached to the wall. Three heights of nominal y+ values of [15, 30, 60]
were chosen and the appropriate physical wall-normal distances were defined and propagated back
upstream towards the step, consistent with the notion of a Cartesian LES mesh. This resulted in the
cell-centers near the step having the same physical distance to the wall as in the reattached region,
but due to the comparably low wall shear stress values behind the step, they have much lower
actual y+ values. A traditional law-of-the-wall-based wall model might incorrectly assume these
low y+ values justify a linear viscous-sublayer extrapolation for determining the wall shear stress
instead of using some other law appropriate for detached flows. The same three physical wall-
normal distances were used on both the "floor" below the step and on the step face. Collectively
this resulted in 9840 pseudo-LES grid cells within the recirculation region for each of the 50 DNS
frames.

The upstream and downstream regions for the cavity case were treated similarly to the upstream
region of the backward facing step case (Fig. 1). The same two sets of filter sizes were used for
the wall-parallel directions (10 x 4 and 20 x 8 DNS grid points) along with three nominal heights
of y+ = [30,60,100]. These filter set sizes resulted in pseudo-LES grids of 62 x 19 x 3 and
30 x 9 x 3 points in the upstream region—which had the same streamwise dimension, 5460, as was
used in the backward facing step case—for the 10 x 4 and 20 x 8 grid-point filters, respectively.
The downstream region had a streamwise dimension of 6460 resulting in pseudo-LES grids of
74 x 19 x 3 and 36 x 9 x 3 points for the two grid-point filter sets, respectively. Collectively this
resulted in over 4300 pseudo-LES grid cells in the upstream region and 5190 in the downstream
region of the cavity flow case. A total of 70 independent DNS frames, all separated in time by
2.55h/ Uoo , were used from the cavity flow simulation.

In the actual cavity itself, a single filter set of 4 x 4 DNS grid points was used on both cavity
walls and on the cavity floor. Three wall-normal heights were used and were defined as equal to
the three heights used in the recirculation region of the backward facing step flow, which were
defined based on nominal y+ values defined in the reattached region. This resulted in a usable grid
of 32 x 21 x 3 pseudo-LES grid cells on the cavity floor with 14 x 21 x 3 grid cells on each cavity
wall, thus resulting in 3780 total grid points available from each of the 70 DNS frames.

C. Data Scaling and Sampling Procedures

After the data were filtered at every pseudo-LES grid point and the invariants were calculated,
not only was everything normalized with outer variables (U,„0, poo, and h), but additional pre-
processing of the data and datasets was performed to provide better performance of the neural
networks. First, the maximum vector norm of each of the LI 's and for Tw was determined from
all of the available data and each respective variable was divided by the maximum norm. This
resulted in the magnitude of each LI in each input vector lying within the range of zero to one. The
same was true for T w . Additionally, the values of the individual A's often covered multiple orders
of magnitude across all the available input data. Even when these data were linearly scaled to a

7 of 24

American Institute of Aeronautics and Astronautics



negative one to one range to improve network performance, large magnitude outliers caused the
distributions of the A's to be very narrow, which is not ideal for the networks to parse. In order to
provide better distributed data for the networks, all of the lambda data was transformed as,

= sign (Ai) loglo D (7)

prior to being mapped to a range of negative one to one. This provided much better distributions
of the A values within the range and improved network results.

After being re-scaled in this manner, the data were then split into groups of 80% and 20%
within each of the aforementioned regions of the different flows. The 80% files were used for
training and validation while the 20% were held aside for use in the final testing shown below.
Joint probability density functions (PDFs) of the two non-zero components of Tw taken from each
region of the flow showed an expected behavior that the wall shear stress values near the mean are
much more probable than more extreme values. In the attached boundary layer region, the PDF
resembles a log-normal shape for the streamwise component of the stress and a Gaussian shape
for the spanwise component, consistent with experimental measurements [16]. Prior experience
showed that when neural networks were trained on data without accounting for this, the networks
returned data with a normal distribution with a smaller standard deviation than that seen in the
training data. Essentially, networks have a tendency to only learn the most common occurrences
of Tii, (which was typically near the mean) and would predict a wall shear stress near that value
regardless of the input features. The networks were not learning the low-probability events. So
a strategy was developed and applied to the files containing the 80% of the data to be used for
training such that feature vectors with more common wall shear stress vectors were undersampled
and feature vectors with low-probability wall shear stresses were sampled repeatedly (up to 10
times) so that their representation within the training dataset was increased. Applying this strategy
to each of the 80% data files for each of the regions of each flow also allowed for the total amount
of training data from each region to be independently adjusted to make sure that training was not
too extremely biased towards the regions or filter set sizes from which more pseudo-LES grid
points were available. While the total amount of training data across all regions was kept relatively
constant, the relative contribution from the datasets with the larger filter sizes was increased while
the relative contribution from the datasets with the smaller filter sizes (where more data were
available) was decreased. The data files with the 20% of the data that was partitioned off were
not manipulated in any way so that final testing could be representative of the actual data obtained
from LES simulations.

IV. Neural Network Methods

The invariant approach used here necessitated a machine-learning network architecture that
could correctly utilize the scalar- and form-invariants and combine them in the correct way follow-
ing Eqn. (5) such that the unknown scalar coefficients could be determined. For this, a network
architecture based on the Siamese Multi-layer Perceptron (S-MLP) was used [17]. A multi-layer
perceptron is simply a network of individual perceptrons (neurons) organized into an input layer,
hidden layers, and an output layer. The S-MLP is composed of two MLPs organized in parallel,
each with its own input and output layers and potentially its own hidden layers. The output layers
of the two parallel MLPs are combined following some function and a final output is formed. For
the purposes of training, an architecture must be designed that can propagate errors backwards
through the combination of the individual output layers into the two parallel MLPs correctly based
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Figure 2: Diagram of the Siamese Multi-layer Perceptron architecture as designed and imple-
mented for the invariant approach.

on the single set of outputs from the final output layer. For example, if the outputs of the first and
second MLP of a S-MLP are to be summed into a final output, the architecture must pass errors
backwards through that sum to appropriately correct the weights in each of the first and second
MLPs in order to correct the final single output.

Our S-MLP was designed such that one MLP took all of the scalar-invariants (20 A's) as inputs,
and operated on them to produce an output layer of scalar coefficients (8 G's). The other MLP took
as inputs the form-invariants (8 ifs of three components each) but did not perform any operations
on them and simply passed them directly to the output layer where they could be combined with
the G's following Eqn. (6) (Fig. 2). This produced the final wall shear stress output vector which
could be checked against the known target. This custom architecture was then used to adjust the
weights used on the one side of the S-MLP that is predicting G's, thus training the network towards
minimizing the total error in predicting the target shear stresses.

The S-MLP networks were built using a combination of open source and Sandia National Lab-
oratories' proprietary software developed for ML research. This included constructing our neural
networks using, as a foundation, a combination of TensorFlow [18] and Kerasb. TensorFlow is
an open source library for computation, originally developed by Google, which focuses on tensor
computations which form the core calculations in neural networks. Keras is an open source library
built as an abstraction to TensorFlow, Microsoft Cognitive Toolkit (CNTK) [19], and Theano [20].
It eases construction of neural networks with the aforementioned underlying packages. Addition-
ally, a Sandia National Laboratories' library called TensorNet, that allowed us to construct new
neural networks quickly and easily from JavaScript Object Notation (JSON) definitions, was also
used. It provides for flexible use of training, validation, and testing datasets, as well as cross-
fold validation, convolution, and auto-encoders. Finally, we used a Sandia python library named
GrouPy, which contains base data structures that facilitate data introspection and processing, such
as dataset subsampling, joining, and splitting.

The actual networks used here were built with four hidden layers on the one side of the S-

bhttps://keras.io
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MLP with those layers having 120, 92, 64, and 36 nodes, respectively. The final layer of that
side had eight nodes which were the G values. For each of the individual flow cases and for
each region within each of the flow cases, an ensemble of ten S-MLPs was trained using the
uniformly sampled data taken from the 80% of the data partitioned off for training and validation.
This meant that seven different ensemble networks were trained: one using all of the data from
both regions of the backward facing step case, one each using data from each of the two regions
of that case, one using all of the data from all three regions of the cavity flow case, and one
each using data from each of the three regions of that case. Ensembles were used because each
individual network was initialized with random weights and thus each converged to a slightly
different solution. Using the average prediction over the ensemble ensured that a stable and more
accurate result was achieved. The seven trained ensemble networks were then each tested against
the respective data files containing the 20% of the data that corresponded to the data each was
trained on. So the network trained with 80% of the data taken from the upstream region of the
cavity flow case was then tested against the remaining 20% of the data from that region.

Additionally, a final test was performed where the network that was trained on data from all
three regions of the cavity flow case was used to predict the 20% of the data taken from both regions
of the backward facing step case. This was done to test the potential portability of a network
trained on a range of flow topologies when applied to make predictions on a new configuration not
contained within the training set but having similar topological features. Obviously a large set of
other tests could be done with networks trained on one set of data and tested on another, but we
restricted ourselves to only these eight tests for this work.

V. Results

The ensembles of S-MLPs generated predictions for the non-zero components of the wall shear

stress (TSMLP,i)c which were then processed to obtain the wall shear stress magnitude ( Tsm-LP I).
These components of the wall shear stress vector, and the wall shear stress magnitude, were then
compared to both the true values taken from the DNS (TDNS) and to wall shear stress values that
would have been predicted by a traditional LES law-of-the-wall boundary layer model, Twalllaw.

The wall shear stress magnitudes as defined by the law of the wall (1 Tevalllawl) were determined
for each point based on the filtered velocity magnitude at the cell center using the formulation of
Spalding [21]. The magnitudes were then decomposed into individual components (7"w
assuming alignment of the shear stress vector with the filtered velocity vector. Thus, the S MLP

‘ a/ / / a b y

predictions for both the components and the magnitude could be compared to both the ideal and to
the law of the wall. The expectation was that these two comparative datasets constituted the "best
achievable and "worst acceptable limits for the new model.

The quality of the different predictions was quantified via two direct metrics, the one-dimensional
(1D) correlation coefficient (r) and the mean squared error (MSE). The correlation coefficient was
defined as,

r = (c1)) (8)
VErti=i (Pi — (23))2 \/Erzt=i(c4 — (C2'

where pi and di are the predictions and true DNS data, respectively, and the are means taken
over all available data pairs. The MSE was defined as,

MSE = (pi — d2)2) , (9)

'the stress vector was assumed to be tangential to the wall for all the filtered DNS data.
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Table 1: Quality metrics comparing wall shear stress component and magnitude (17-,,,I) predictions
from the S-MLP (Tsmi,p) and from the law of the wall (Twaiiiaw) to the true DNS values for data
taken collectively from both regions of the backward facing step flow.

r MSE K-L Div.

ITSMLP1
1Twalllawl

0.862
0.782

5.36e-7
1.11e-6

0.052
1.75

TSMLP,x 0.924 5.21e-7 0.061

Twalllaw,x 0.875 9.05e-7 2.11

TSMLP,y 0.714 2.37e-9 0.002

Twalllaw,y 0.528 2.31e-9 0.258

TSMLP,z 0.674 2.79e-7 0.010

Twalllaw,z 0.394 4.23e-7 2.29

and is a global norm of the errors of the individual predictions. The MSE is somewhat biased
towards errors in large magnitude values, i.e., a smaller relative error in a large magnitude stress
will have a larger impact on MSE than a larger relative error on a stress near zero. The MSE was
used as the loss function in the neural network training process as well, meaning that the weights
of the neural network were optimized so as to minimize the MSE.

Additionally, discrete PDFs of the data from the two different prediction techniques were also
produced and the accuracy of their relative fits to the PDF of the true wall shear stress data was
quantified via the Kullback-Leibler Divergence, or K-L Divergence (KLD). The K-L divergence
is defined as,

bins

Pk'k=1

and measures the amount of information that is lost when approximating the distribution D (the
true DNS data) using the predicted distribution P. For a perfect prediction of D by P, KLD = O.

K LD(DHP) = Dk In
k-D

(10)

A. Backward Facing Step Flow Case

The first S-MLP ensemble was trained on data from both the upstream and recirculation regions of
the backward facing step flow and was tested against data taken from both regions. That network
showed considerable improvement in its predictions over the law of the wall, both in the quality
metrics (Table 1) and the PDFs (Fig. 3). The correlation coefficients were improved and the MSE
values were reduced for the stress magnitude and for two of the three stress components: the
x-component (which was always zero on the face of the step) and the z-component.

Only the MSE for the y-component of the wall shear stress did not show an improvement over
the law of the wall. These values are only non-zero on the face of the backward facing step and
typically have much lower magnitudes than the other components. The use of the MSE as a loss
function for the neural networks likely led to the lower accuracy for these low-magnitude values.
It may be possible to improve the predictions of the y-component by appropriately weighting of
the loss function to remove this bias, but at the expense of higher error in prediction of the other
components. The S-MLP does show an ability to predict much higher wall shear stress values than
seems to be capable from the law of the wall and is therefore able to much more accurately fill
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Figure 3: Probability density functions of the wall shear stress magnitude (17-,,I) and its components
as predicted by the law of the wall and the S-MLP compared to the true data from filtered DNS for
the backward facing step case.

out the PDFs for the magnitude and components. For 7-„1,y, although the shape of the PDF was
improved (lower K-L Divergence) by using the proposed representation with the S-MLP, the MSE
was slightly worse than with the law of the wall approach. This suggests that although the S-
MLP does a good job estimating more extreme values of Tw,y and perhaps even produces extreme
values when appropriate (still has a decent r), the actual accuracy of any given extreme value is
not always particularly good. So although the law-of-the-wall predictions are almost always near
zero, the error is very consistent and low, where the S-MLP has larger individual errors but a better
aggregate PDF. On the whole, in an LES simulation of a recirculation region, this may still be a
large improvement in aggregate and may improve the performance and estimation of total forces
acting on a surface of interest.

The PDF of the wall shear stress magnitude for the S-MLP shows a local peak near bw1/(PU2)
0.004 (in which it is more likely to predict that magnitude than is correct based on the DNS). This
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Table 2: Same as Table 1 but for the upstream region of the backward facing step case.

r MSE K-L Div.

ITSMLP1
1Twalllawl

0.537
0.385

8.45e-7
1.06e-6

0.194
3.77

TSMLP,x 0.534 8.48e-7 0.200

Twalllaw,x 0.380 1.02e-6 3.75

TSMLP,z 0.468 2.32e-7 0.020

Twalllaw,z 0.107 2.22e-7 6.88

peak is primarily attributed to a similar feature in the PDF of Tw,x in the upstream region of the
flow, (as will be seen again for the upstream region-only model, Fig. 4(b)).

I. Upstream Region

Again the S-MLP predictions for the upstream region of the backward facing step flow showed
improvements over the predictions based on the law of the wall in each of the metrics (Table 2).
The correlation coefficient improved, but stayed at ,-.,' 0.5 for the magnitude and the components
of the wall shear stress. Combined with the improvements in the MSE, this suggests that although
there was a general improvement in the accuracy of predicting individual stress values, the high
level of r seen for the combined data set was mostly due to improvements made in the recirculation
region of the flow.

The improvements in K LD were perhaps the most impressive, and especially so for the span-
wise component of the wall shear stress, Tw,z. The PDFs for the shear stress magnitude show
the considerable improvement of the S-MLP predictions over the law of the wall and are nearly
indistinguishable from the PDF for the x-component of the shear stress (Fig. 4). This was not
unexpected given that in the upstream region the flow was essentially that of an attached unidi-
rectional boundary layer wherein the streamwise component should dominate the wall shear stress
vector.

The S-MLP does exhibit an incorrect peak location near Tw,x/(pU2) --.--2, 0.004. This is also
observed in the PDF of 1 7-w 1 for the upstream region, and corresponds to the same incorrect peak in
the data based on training using the entire backward facing step case at once (Fig. 3(a) and (b)).

The PDFs for the z-component show that the law of the wall model provides a very narrow
distribution for Tw,z, while the S-MLP predicts an almost perfect distribution of Tw,z (Fig. 4(c)).
Interestingly, although the PDF of the S-MLP for Tw,z is nearly perfect, the correlation coefficient
is still relatively unimpressive, thus suggesting that the S-MLP still misses a considerable number
of individual predictions, but does so in a way that produces an appropriate statistical spread of
predictions that leads to an accurate PDF.

2. Recirculation Region

In the recirculation region, the S-MLP again outperformed the law of the wall approach in predict-
ing the wall shear stress magnitude and all three components of the wall shear stress vector (Table
3). The fact that the network trained on data from only the recirculation region is better at predict-
ing Tw,y than was the law of the wall while the network that was trained on data from everywhere
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Figure 4: Same as Fig. 3 but for the upstream region of the backward facing step case.

in the domain failed to improve upon the law of the wall predictions (with respect to the MSE)
suggests that when the network was trained on a narrower set of data (from only the recirculation
region), it was better at recreating the correct 7-„,,y values. When a network was trained on the
broader set of data which included data from the upstream boundary layer, its ability to predict
Tw,y on the face of the step was lost by the network trying to learn more information.

The PDFs of the wall shear stress magnitudes and its components for each of the prediction
methods showed the ability of the invariant representation to predict low-probability stresses of
relatively high magnitudes (Fig. 5). Overall, the S-MLP appears to be a significant improvement
over the law of the wall, and was perhaps better for this region of this case than for any other that
was tested. The spikes in the Tty,x and Tw,y PDFs at 0 come from the vectors taken in locations
where individual components are zero by definition. For T„,,x, the zeros come from vectors taken
from the step face, while for Tw,y the zeros come from every location on the floor below the step
where the wall-normal shear stress is zero.
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Table 3: Same as Table 1 but for the recirculation region for the backward facing step case.

r MSE K-L Div.

ITSMLP1

1Twatuawl

0.833
0.652

3.49e-7
1.14e-6

0.020
1.10

TSMLP,x 0.917 3.22e-7 0.025

Twalllaw,x 0.829 8.35e-7 1.94

TSMLP,y 0.754 2.96e-9 0.003

Twa///aw,y 0.529 3.66e-9 0.405

TSMLP,z 0.722 3.11e-7 0.013

Twalllaw,z 0.444 5.40e-7 2.90

Table 4: Same as Table 1 but for the cavity flow case.

r MSE K-L Div.

ITSMLP1

1Twaulawl

0.790
0.418

1.09e-6
2.94e-6

0.138
2.47

TSMLP,x 0.885 7.40e-7 0.160

Twalllaw,x 0.809 1.14e-6 2.36

TSMLP,y 0.833 3.91e-7 0.023

Twalllaw,y 0.507 1.08e-6 0.605

TSMLP,z 0.654 6.71e-7 0.012

Twalllaw,z 0.191 1.09e-6 1.08

B. Cavity Flow Case

For the cavity flow case, first a S-MLP ensemble was trained on data from all three regions and
then tested on data also taken from all three. Again the S-MLP significantly outperformed the law
of the wall in both the quality metrics (Table 4) and in the individual PDFs (Fig. 6).

An issue was again observed with the right-most peak in both the magnitude and in Tw,x being
at a slightly higher value than was seen in the DNS data. This was again attributed to a too-common
prediction of values for Tw,x that were incorrect in the upstream region (as seen in Fig. 4(b)), but
also in the downstream region once the attached unidirectional boundary layer was re-established
(shown below).

The S-MLP did appear to have an issue with predicting low probability, high positive Tw,y
values. These values primarily come from the upstream "face of the cavity where recirculating
flow is moving in the positive y direction. It may be that the networks were simply not exposed
to enough data of this type for the proper behavior to be learned, and it may be that an improved
sampling strategy or some other approach may improve performance for these events. Further
investigation is warranted.
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Figure 5: Same as Fig. 3 but for the recirculation region of the backward facing step case.

1. Upstream Region

The results for the upstream region of the cavity flow case were nearly indistinguishable from the
results for the upstream region of the backward facing step case. Given that the same inlet boundary
condition was used in the DNS for both cases and the boundary layer growth rates were observed
to be nearly identical upstream of the "step" of the same height used in both cases, it was expected
that the wall shear stress information in the two upstream regions would be nearly identical. This
being the case, individual PDFs for the magnitude and components of the wall shear stress in the
upstream region for the cavity flow case are not shown and the reader is instead referred back to
Fig. 4.

2. Downstream Region

The S-MLP ensemble network trained and tested on the region downstream of the cavity also
showed the same incorrect peak in the PDF of the shear stress magnitude and in 7„,x (Fig. 7).
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The downstream region contained data from both upstream and downstream of the point at which
a traditional unidirectional attached boundary layer was observed along the wall. Upstream of
that point (still within the downstream region), the effects of the shear layer impinging at the
downstream corner of the cavity resulted in the wall-adjacent flow having a complex topology
and even showing recirculation behavior just beyond the cavity lip. This recirculation behavior is
what causes negative rw,x values in the downstream region, while the attached boundary layer seen
downstream of its re-establishment point was responsible for the positive Tw,x values. Because of
the similarity between that downstream attached boundary layer and the boundary layer behavior
in the upstream region, the same incorrect peak is seen in the PDF of Tw,x predictions in the
downstream region (Fig. 7(b)) as was seen in the upstream region (Fig. 4(b)).

Regardless of the slightly missed peak for Tw,x, the quality metrics showed that the S-MLP still
did better than the law of the wall for both the magnitude and Tw,x (Table 5). The behavior for Tw,z
was perhaps the most interesting, in that the law of the wall predictions had a near zero r, but also
had a slightly better MSE than the S-MLP. The low correlation produced by law of the wall for
Tw,z can be attributed to the assumption of alignment between the wall shear stress and the velocity
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vector used in the law-of-the-wall model. This assumption is not consistent with the filtered DNS
data, resulting in a very low correlation for the spanwise stress component (see [22]). The law
of the wall also consistently predicted lower magnitudes for Tw,z than were correct, leading to an
MSE that was only slightly better than if Tw,z was assumed to be zero everywhere in the region. The
S-MLP more often predicted larger magnitude values and produced a much improved correlation
with the filtered DNS. However, many of the individual predicted values from the S-MLP must
have had larger errors than if something close to zero had been predicted, thus increasing the MSE
on the whole.

3. Cavity Region

For the cavity region of the cavity flow case, again the S-MLP ensemble network trained on data
from solely that region significantly outperformed the law of the wall in predicting the shear
stresses. This improvement was evident in all of the quality metrics for all of the components
(Table 6), as well as in the PDFs and the corresponding K-L Divergences (Fig. 8). The distribution
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Table 5: Same as Table 1 but for the downstream region of the cavity case.

r MSE K-L Div.

1TSMLP I

I Twawaw I

0.476
0.337

9.82e-7
1.24e-6

0.217
2.52

TSMLP,x 0.533 1.10e-6 0.220

Twalllaw,x 0.280 1.32e-6 2.47

TSMLP,z 0.410 5.27e-7 0.050

Twalllaw,z 0.097 5.11e-7 2.99

Table 6: Same as Table 1 but for the cavity region of the cavity flow case.

r MSE K-L Div.

Tsn/LA
ITwalllaw I

0.862
0.306

1.71e-6
7.57e-6

0.051
4.17

TSMLP,x 0.873 3.41e-7 0.050

Twalllaw,x 0.694 1.18e-6 5.46

TSMLP,y 0.834 1.35e-6 0.088

Twalllaw,y 0.501 3.79e-6 2.25

TSMLP,z 0.724 1 .45e-6 0.028

Twalllaw,z 0.221 2.85e-6 1.70

of Tw,x was concentrated towards negative values, all coming from the circulating flow along the
floor of the cavity. Unlike the recirculation region of the backward facing step flow, there was not
a peak at positive Tw,x values because no reattachment occurs.

Of all of the individual regions tested throughout this work, this region had the highest shear
stress magnitudes, driven primarily by the most extreme individual values of yw,y and Tw,z observed
in any region studied here. These extreme values were primarily found on the downstream "face"
of the cavity where the shear layer generated by the flow separation at the upstream edge impinged
on the downstream cavity corner. Unlike the law of the wall, the S-MLP had no problem capturing
and recreating these more extreme values, suggesting that the S-MLP may be a promising approach
to modeling cavity flow and other complex flows with regions of separation.

C. Predicting the Backward Facing Step with Cavity Flow Case Data

The final test reported here is one in which the S-MLP ensemble that was trained on data from all
three regions of the cavity flow case was tested on the 20% of the data taken collectively from the
two regions of the backward facing step case. Because the cavity flow case included all of the same
flow phenomena (boundary layer, recirculation, reattachment, etc) observed in the backward facing
step case, and the cavity flow case had more extreme values on which the S-MLPs were trained,
it was hypothesized that this network ensemble would be able to accurately predict the backward
facing step data. The PDFs (Fig. 9) and quality metrics (Table 7) all confirmed this expectation.
The S-MLP ensemble trained on the cavity flow data was a much better predictor of the wall shear
stresses from the backward facing step case than was the law of the wall, and was only slightly
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Figure 8: Same as Fig. 3 but for the cavity region of the cavity flow case.

worse than was the network ensemble trained on the backward facing step data. In fact, for Tw,y
specifically, this network outperformed the network trained on backward facing step data, both in
MSE and KLD (compare to Table 1). This suggests that the cavity-trained network was better
at predicting the extreme low-probability events of Tw,y than was the backward-facing-step-trained
network.

VI. Discussion, Conclusions, and Future Work

The results of the neural network near-wall models for wall shear stress gave reasonable predic-
tions in the upstream regions of the two flow cases, but it is surely the performance of the models
in the recirculation and cavity regions which was the most striking. Modern near-wall models have
often demonstrated acceptable accuracy for attached boundary layer flows, and thus improvements
upon shear stress predictions in those regions may be of minimal impact. But it is situations such
as the backward facing step recirculation and cavity regions that prove particularly challenging for
near-wall turbulence models.
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Figure 9: Same as Fig. 3 but for the S-MLPs trained on data from the cavity flow case and tested
on data from the backward facing step case.

Based on the a priori results reported here, the S-MLP implementation has the potential to
significantly improve wall shear stress modeling in separated flows. This includes improvements
to both the accuracy of individual predictions, as well as for the statistical properties of wall stress
distributions. It should be noted that it is currently unknown how well this approach will work
when implemented and tested in a LES code. One known issue is that wall-modeled LES dynamics
will differ from those found in filtered DNS, due to the use of imperfect subgrid and near-wall
models in the LES. The ability to use a trained S-MLP as the wall shear stress function has been
implemented into an in-house LES code at Sandia National Laboratories. Preliminary testing on
a channel flow case has demonstrated that a trained network can be used as a wall shear stress
function within the code. Further testing of the accuracy of the predicted stresses, as well as the
accuracy of the associated flow-field statistics within the channel, as well as confirmation of the
expected coordinate invariance property of the models, is ongoing.

One other limitation of the work reported here was that we only considered specific sets of
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Table 7: Same as Table 1 but for the S-MLPs trained on data frorn the cavity flow case and tested
on data from the backward facing step case.

r MSE K-L Div.

ITSMLP1
1Twatuawl

0.842
0.782

6.58e-7
1.11e-6

0.072
1.75

TSMLP,x 0.904 7.02e-7 0.071

Twalllaw,x 0.875 9.05e-7 2.11

TSMLP,y 0.689 2.09e-9 0.001

Twalllaw,y 0.528 2.31e-9 0.258

TSMLP,z 0.655 3.22e-7 0.004

Twalllaw,z 0.394 4.23e-7 2.29

filter sizes, flow variables, and network hyperparameters and it may be that some other set or
combination of sets would be capable of producing even better (or obviously worse) results. Some
testing of the number of layers and the number of nodes within each layer, along with the number
of networks to use in each ensemble has been done. Further testing of these values is ongoing
in order to determine the optimal choices that produce the best results while minimizing network
complexity and training times. The values chosen here were picked somewhat arbitrarily, and
although better results were found with these values than with smaller networks/ensembles (e.g.,
three hidden layers with fewer nodes and only three networks in the ensemble), it is not yet known
whether results could be further improved with different parameter values or if the network could
be reduced in complexity while still returning results of equivalent quality.

The flow variables chosen here, the choice of which dictated the size and shape of the represen-
tation, were picked because of their availability, universality, applicability, and simplicity. It may
be the case however that some of the data used here is unnecessary (e.g., because of redundancy)
and/or that the inclusion of some other flow features may improve the results farther. Near-wall
pressures and pressure gradients, for example, are expected to be important for near-wall model-
ing in some flow cases and their inclusion is yet to be tested. If the pressure at the wall and the
near-wall pressure gradient vector were included in the input feature set, it would result in a larger
set of A's and ifs and thus larger networks, but may produce superior results.

The results of a network trained on one set of data and tested on data from a somewhat different
flow case are also promising for the potential portability and applicability of this approach. Testing
of this possibility is also ongoing. Ideally the objective would be to produce a single, optimally-
designed network, which was trained on a suite of flow cases that could be called upon as the
near-wall function in operational LES codes and which would be an accurate predictor of wall
conditions even for flow cases on which it was never trained.
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