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Objective

Currently traditional methods are used to detect arrivals in three-component seismic waveform
data collected at various distances. Accurately establishing the identity and arrival of these
waves in adverse signal-to-noise environments is vital in detecting and locating the seismic
events. Autocorrelation and template matching techniques are just a few of the various methods
that may be used, each with their own benefits and drawbacks. For example, template matching
methods have been shown to be effective, but are restricted to repeating signals and become
computationally intensive with increasing numbers of templates.

In this work, we move to convolutional neural networks (CNNs). CNNs have been shown to
significantly improve performance at local distances under certain conditions. In this work we
expand the use of CNNs to increasingly remote distances and lower magnitudes. We explore the
advantages and limits of a particular approach and begin to understand requirements for
expanding this technique to different types, distances and magnitudes of events in the future.

We describe in detail performance results of this method tuned on a new dataset with expert
defined arrival picks. The dataset used is from the Dynamic Network Experiment 2018 (DNE18)
and comes from sensors in Utah. We demonstrate the ability to train the CNN on events from
the dataset and achieve significantly higher test set performance than standard methods.
Furthermore, we validate performance on streaming data, including very low magnitude expert
picked arrivals.

Goal:

Use established CNN methods on a new expert picked arrival dataset to understand
advantages and limitations of current CNN methods.

CNNs

CNNs are a particular type of feedforward artificial neural networks that use a linear convolution
in some layers which has several advantages over fully connected layers. Convolutions act as
filters choosing spatially invariant features; sharing these parameters throughout the data
dramatically increases generalizability and reduces the parameters that need to be trained,
improving efficiency.
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Figure 1: ConvNetQuake Architecture (Reference 1)
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Seismic Data

The data used in this study is the 2018 Dynamic Networks Data Processing
and Analysis Experiment (DNE18) dataset. A more detailed description can
be found elsewhere. It consists of University of Utah Seismograph Stations
(UUSS) waveform data spanning from 01/01/2011 through 01/14/11.
Stations sample three component data (N, E, Z) at 100 Hz. Although there
are many stations to choose from, we only use a select one for this study.

This catalog consists of a high quality, hand-
picked seismic events derived from analyst
Chip Brogan’s picks with the Analyst Review
Station (ARS) software as well as other
automated event input sources. The event
must be sensed on 3 or more stations in
order to build an event. All events (man-
made or natural) generated match this
criteria. The advantage of this dataset is the
low magnitude and expert curated events we
will use as ground truth.

Figure 2: Map of DNE18 stations (black triangles) and seismic events (red circles)

Training and Validation

Data Preparation:

Streams of waveform data are normalized and divided into 10 second windows. Each window is
classified as having either seismic noise or signal based on labeled arrivals in the event catalog. Because
we have exact arrival times, yet want to train the network to recognize events anywhere in the window,
we introduce a time buffer into some events between the start of the window and event onset.

Training:

We train the CNN by minimizing with backpropagation the L2-regularized cross-entropy loss
function which measures the difference between the predicted and actual class probability. We
form batches of 128 windows consisting of 64 noise and 64 signal events per batch. We use the
ADAM optimizer and a learning rate of 10E-4. We use a batch of 128 signal and noise events. We
train until the accuracy saturates without any improvement which is at about 96%.

Validation:

We separate the dataset into a primary training set, and a distinct validation dataset. We use data from
01/13/11 00:00 to 01/15/11 00:00 for validation. This gives sufficient signal events to accurately measure
performance on a distinct set of data. We have both a signal and a noise validation set. Detection
accuracy is the metric we use to gauge performance. We track this metric as the neural network is
trained, see figure 3 below.
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Figure 3: Detection accuracy of noise (purple ) and signal events (blue).
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Results

To measure performance, we run the trained CNN on streaming data and compare
the results to expert picked event catalog. Our network requires 10 second
windows, and we employ two methods to prevent potential overlap of signal events
between windows. First, we choose windows every 11 seconds. Second, we count as
a successful picks any 10 second windows in which there is an event fromt=-1stot
= 10s. This is illustrated below.
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Although we do have this curated event catalog with expert picked arrivals, it still may be challenging to
understand results other than true positive arrivals labeled by the network. To address this in the future, we
plan to compare with other established detection methods. Additionally we plan on examining potential false
positive and false negative events to expert analysts to verify a lack of signal in the data.
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We examine CNN picked arrivals and determine at least a majority are true arrivals that were not
previously picked, implying a precision of about 79%. We also examine missed picks and determine
they often fall at the end of the signal window.

Precision
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Precision of various detection algorithms on this dataset.

HMM — Hidden Markov Model detection algorithm. See Reference 3.
CNN — ConvNetQuake
CNN * - ConvNetQuake with potential newly discovered arrivals

* We examine CNN picked arrivals and determine at least a majority are true
arrivals that were not previously picked, implying a precision of about 79%

Conclusions

1. CNN provide a fast and scalable way to detect earthquakes from raw 3 component waveform data.
2. When applied to an expert picked dataset, the ConvNetQuake architecture has comparable performance.
3. Further training on large datasets is likely to improve performance, especially at lower magnitudes.

Future Work:
4. Validate arrival picks with various other arrival detection techniques to better understand performance.
5. Examine false positive and false negative events to understand CNN outputs.
6. Move to spectrogram image inputs.
7. Explore various neural network architectures and training methods for increased performance.

Acknowledgements:

We would like to especially acknowledge the original work done by Thibaut Perol, Michael Gharbi and Marine A. Denolle who created the
original ConvNetQuake on which this CNN is based.

References:

1. Convolutional Neural Network for Earthquake Detection and Location, Science Advances 14 Feb 2018: Vol. 4, no. 2, e1700578
2. The 2018 Dynamic Networks Data Processing and Analysis Experiment (DNE18), AGU 2018 S53E-0469
3. Detecting Seismic Events Using a Supervised Hidden Markov Model , Lynne Burks, AGU 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA-0003525. The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, the National Nuclear Security

Administration or Sandia National La‘ratories. SAND2019-XXXX rforres@sandia.gov

PUTTING AN END TO'NUCLEAR EXPLOSIONS



