
Disclaimer

The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO

13.07.22

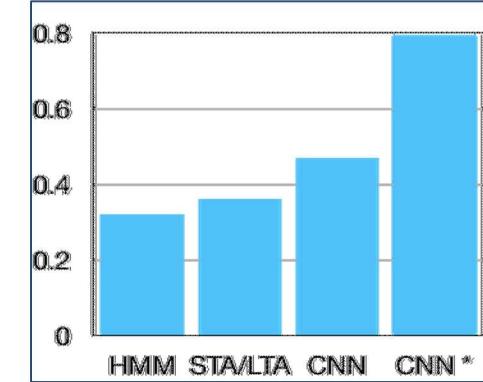
Detecting Low Magnitude Seismic Events using Convolutional Neural Networks

Robert Forrest, Jaideep Ray, Chris Young - Sandia National Labs

Input: 10 second windows. Eight convolutional layers; down sample the signal by two; 32 filters each.
 Output: 128 features then a fully connected layer containing class scores.
 Batches of 128 windows consisting of 64 noise and 64 signal events per batch. We use the ADAM optimizer and a learning rate of 10E-4.

MAIN POINT:

- Use new CNN methods on a new expert picked arrival dataset to understand advantages and limitations of current CNN methods.
- **This approach has the potential to rival or surpass traditional methods of detecting low magnitude seismic arrivals.**


WHY

- More sensitive modern methods suffer from performance drawbacks, requiring large libraries of templates or lots of computing.

HOW

- Create a Convolutional Neural Network that understands 3 component seismic data.
- Train it with DNE18 data and low magnitude events.
- Examine initial performance and compare to existing methods.

Results - Precision

Precision of various detection algorithms on this dataset.

HMM – Hidden Markov Model detection algorithm.

CNN – ConvNetQuake

CNN * - ConvNetQuake with potential newly discovered arrivals