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Light Propagation with Phase Discontinuities

2 | Metasurfaces

<

EK1
< 5 . 30 — S — )A—_——Ihl
Subwavelength ‘meta-atoms’ arranged in a planar array P e e s —
R N TN e —
L /8 r/4  3r/8 . r/2  sr/8  3r/d 708 -
D Nanfang Yu Science 2011, 334, 6054, 333
: :
4 Metasurface holograms for visible light
-G
B
= W
A Broadband, Background-Free Quarter-Wave
Plate Based on Plasmonic Metasurfaces
Powertful platform for control Xingjie Ni, Nature Comm. 4, 2807 (2013)
" (b) Tiean T
over the optlcal response R Lirherme Dynamically reconfigurable

terahertz metamaterial through
photo-doped semiconductor
379, = sin'(\/T)

sub-unith LK L N AN~ [ = 36um ) E‘T r": 2
T ad Lod Lod b

What about time?

l

Tuning 1s still a challenge

b e s e 2
L]

Lod

RE
Lod L

Incident wave

Capasso, Nano Lett. 2012, 12, 6328

Chowdhury, Appl. Phys. Lett. 99, 231101 (2011);




Solution-Processed Phase-Change VO, Metamaterials
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4 I The all dielectric approach

Advantages

« Low optical absorption
« High damage threshold
« Confined modes

* Free carrier injection
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, | Optical tuning of a magnetic dipole
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6 I Breaking the symmetry: high-Q resonance

Simulation: Fano Resonances
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7 | Fabrication Process & Design

Process scheme:
Etch Mask

Si0, - 220 nm
GaAs [100]- 300 nm
(AL Ga,_,),05 - 300 nm

220 nm

300 nm

AlGaO (n ~ 1.6)

Liu, S. et. al. Nano letters 16.9: 5426-5432, 2016 i



8 | Fano Resonance
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0 I Pump induced Fano shift

RQ,{)
AA=10nm _ 1020}
_ = 109
blue shift =
" < 1000 | 10.8
(&) (@)}
S o 07
o ——1=03ps D 980 '
S0 —rt<0ps | [
v
8 960 | 1
S 05
0.2} £
Of0 920 940 960 980 1000 1020 2 0 2 4 6 8
Wavelength (nm) Pump-probe delay (ps)
Pump fluence = 89 uJ / cm? AR = Ri=0.13ps — Ri<o
R 45%
= 0
R’[<0

Trelax = 2.45 ps



11 | Dynamics Analysis
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12 | Free Carrier Index Shift
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13 | Pump Fluence
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14 1 Outlook

Application

« ultrafast switch,
 nearly 3dB modulation 1020
* resonance shift of > a linewidth

1000

Nonlinear phenomenon?
Temporal dynamics

Photon acceleration and tunable
broadband harmonics generation in
nonlinear time-dependent metasurfaces
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Conclusions

Direct gap semiconductor metasurfaces offer many advantages for ultrafast all optical modulation
Silicon devices require laroer pump fluences > 1 m]/cm? with 30 ps relaxation for 0.2 optical modulation
q g = U p p

Transparent conducting oxides (AlZnO, I'TO) require far higher pump fluences 1-10 mJ/cm? range

Nearly 3dB switching performance

The broken symmetry dielectric metasurface studied here allows for an ultrafast, all optical modulation
solution at fluences of less than 100 uJ / cm?.

Ultrafast operation due to direct gap absorption and fast recombination assisted by surface states.

/Ifano ~970 nm
Electric Field Magnetic Field
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Numerical calculations

1.0
e 2
s 117 I
‘5 —|E,)? 10.8
§10—18 |
© | 06 S
S o
€10 2
5 0.4 E’
15 .
£10% 0.2
©
>

< L o s e s e L 0.0

0.9 1.0 1 1.2 1.3

P(Za)) %(Z)E(a))E(a)) Wavelength\(um)

Fano resonance Fano resonance
xR~ 0.9 nNm )\R~ 0.98 nm

EAE]




High-Q Fano resonances in all-dielectric
metasurfaces
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1.3

1.3

Fano metasurface reflectance spectrum

Experimental measurements
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High Q modes Using “Broken Symmetry” Resonators

z 1 s=0.92 FWHM=1.6 nm
04 5=0.95 Q=600 ]
0.3
02

900 l 950 . 1000 . 1050

Wavelength (nm)




Light Emitting Metasurfaces
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