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2 I Metasurfaces

Subwavelength 'meta-atoms' arranged in a planar array

Powerful platform for control

over the optical response

What about time?

1

Tuning is still a challenge

Light Propagation with Phase Discontinuities
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3 Tunable (Real-time control)

Various Methods
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Highly tunable elastic dielectric metasurface lenses
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4 The all dielectric approach

Advantages

• Low optical absorption
• High damage threshold
• Confined modes
• Free carrier injection

Various Materials
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5 Optical tuning of a magnetic dipole
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6  Breaking the symmetry: high-Q resonance
Simulation: Fano Resonances
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7 I Fabrication Process & Design

Process scheme:
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8 I Fano Resonance

Experimental measurements
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9 I Pump-probe experimental setup
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10 Pump induced Fano shift
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11 I Dynamics Analysis

Dynamics of the free carrier plasma
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12 I Free Carrier Index Shift
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13 I Pump Fluence
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14 I Outlook

Application
• ultrafast switch,
• nearly 3dB modulation , 1020
• resonance shift of > a linewidth E
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1 5 Conclusions

Direct gap semiconductor metasurfaces offer many advantages for ultrafast all optical modulation

Silicon devices require larger pump fluences > 1 mJ/cm2 with 30 ps relaxation for 0.2 optical modulation

Transparent conducting oxides (AIZnO, ITO) require far higher pump fluences 1-10 mJ/cm2 range

Nearly 3dB switching performance

The broken symmetry dielectric metasurface studied here allows for an ultrafast, all optical modulation

solution at fluences of less than 100 uJ / cm2.

Ultrafast operation due to direct gap absorption and fast recombination assisted by surface states.
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18 I Carriers - Absorption
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191 Numerical calculations

Y(2 k) E(w) E(w)A, ij j k
Fano resonance

X 
R 
''' 0.9 nm

0

..dills _

k

1Ex12

1Ey12

1Ez12

1E12

 *

1.0

0.8

0 2

0.0
0.9 1.0 1 1.2 1.3

Wavelength pm)

Fano resonance

X 
R 

'''' 0.98 nm

e;• 500 —
• rn1.3

• rnc.
o

o



20 1

High-Q Fano resonances in all-dielectric
metasurfaces

[p = e0 x(1) E + x( 2 ) E2 + x(3) E3 + ...

R

d e Txi,
ta.;

p 
"30 8 —Simulation

—Experiment

=
6.0
T.

CD

0.6 E—,
."2 -ci

t)ki 0.4 N.,..
Tt

m0.2

Z
13
0
00 1320 1340 1360 1380 1400

Fundamental Wavelength(nm)

Yang, Y et. al.Nano Lett. 2015, 15 (11), 7388-7393.

(a)

a-Si:II
011

THG wavelength (nm)

400 433 467 500

20- -0.7

0   0.61 2 1.3 1.4 1 5

Shorokhov, A. S et al Nano Lett. 2016, 16 (8), 4857-4861.

10-fold enhancement of Third-Harmonic Generation
in Si metasurfaces with Fano resonances
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Fano metasurface reflectance spectrum

Experimental measurements
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High Q modes Using "Broken Symmetry" Resonators
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Light Emitting Metasurfaces
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