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2 High Entropy Alloys: unusual mechanical properties
D. Raabe, et al., Steel Res. Int., 2015
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31 What makes HEAs so unique?

High Entropy Alloys: primarily solid solution alloys that contain 5+ alloying constituents,
where microstructures have high configurational entropy (> 1.4R).*

High configurational entropy is believed to thermodynamically suppresses phase separation, a
primary route for degradation of mechanical properties.**

Competition between Gibbs energy for solid
solution and intermetallic formation

AH1114- AHss
AGss < AGIM —> ASss > 

2.0

1.5

T

High Entropy Alloys
High Entropy

E 1.0
c/D ow Entropy

phase

nucleatio
0.5

0.0 7
300

Conventional Alloys

Temperature (K)

: ,.. Avir Oka *
t!_ v'f-t.',0 'Of..1,* r•ur M

0 0" .* * WAN- a. ,,,, 440
, lo, /. lm' .4..i6

iVIIP
ra: A

t 7 ''' 
iiii , IC/ i*k-,. I*

10. 4, liri 4: kirk _' C . 0

ibirP,, f. • '.   '''T ' X 4I ' '
v ..'"r '4." it ie' Z!,A 16$'41*AA'' 6...#

V.. ' ,t,,,r• Nip lir/ 4410:00
...:'...7a1A7),...f"t4.- .,.. ..Awr-- * _TOW ,30.07 ,
m'illeitl,010•TP.11r. TA 44pripP.Z  1, a

GI* wg 41%."4,k Viti,'-'• W a 4oat— ...., OA ... ..ravii. ' Atie ....* ,
14, ir m..„9/7. 7..1. wonsivig. rop4

OkliAPL.1100: t•T f.g.
tft iik#1: ts itsTov
4  ve 446,*

Disordered solid solution
D. Miracle et al., Acta Mat., 2017

*Caveat — several HEAs are multiphase and
contain intermetallics

**Cannot ignore enthalpy!

D. Miracle et al., Entropy, 2014



4 Practical challenges with conventional processing
• Despite promising properties, there are challenges with conventional processing (i.e., casting):

defects and insufficient mixing of constituents.

• Example alloy: CoCrFeMnNi HEA — microsegregation of Mn and Cr, microshrinkage porosity.

EHT = 2000 kV WD = 113 rnm Signal A = VP BSD1 Width = 1143 pm I
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Our focus: explore advanced manufacturing routes of metal additive manufacturing,
severe plastic deformation and thermal spray on the CoCrF eMnNi HEA exemplar



I5 Additive Manufacturing: Laser Engineered Net Shaping

Focused laser
Powder feed - —
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Laser
Collimator material and custom alloy printing.

• 2-color pyrometer and FLIR cameras for
in situ melt pool geometry and
temperature measurements.

• High temperature induction coil for in
situ annealing.

• Hybrid AM and subtractive processing.

• Controlled powder feed rate with up to 5
independent powder chemistries — enable
in situ alloy design studies.
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thermal history during bi-directional metal deposition

Laser
Beam

Delivery
Optics

• Open architecture Laser Engineered Net
Shaping (LENS) apparatus for multi-



CoCrFeMnNi powder feedstock

AAMES 'SORATORY
Ma & Enaw Spivlions

20 kg pre-alloyed HEA

ABC-1-43

'7514rn +45per

solo.4°"

Pre-alloyed CoCrFeMnNi powder

Co

Cr

Fe

Mn

Ni

21.40%

18.38%

19.87%

19.23%

21.09%

LENS processed CoCrFeMnNi
45-75 ,uni powder



71 LENS processed CoCrFeMnNi HEA

100 pm
EHT = 20.00 kV WD = 5.2 mm Signal A = VP BSD1 Width = 705.7 pm

Predominately a fine cellular
solidification substructure, more
homogeneous solid solution.

Small voids and oxides.

Single phase FCC solid solution
•

10 pm
EHT = 20.00 kV WD = 5.2 mm Signal A = VP BSID1 Width = 114.3 pm

10 wn

As-built AM Cast



81 Grain structure results

(001)
Min. = 0.09
Max. = 4.29

Min. = 0.16
Max. = 2.43

All pole figures are
parallel
to build direction

100

101

Typical coarse grain AM structure observed.

Relatively weak crystallographic texture with a slight
<110> preferred orientation along the build axis.



I9 High strength and high ductility mechanical properties
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Evidence of retaining high strength and high ductility
for AM processed CoCrFeMnNi
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[1] R. Li, et al.,Journal of Alloys and Compounds, 746 (2018) 125-134.
[2] J.Y. He, et al., Acta Materialia, 62 (2014) 105-113.
[3] B. Gludovatz,et al., JOM, 67 (2015) 2262-2270.
[4] G. Bi, et al., SPIE/COS Photonics Asia, SPIE, 2018, pp. 10.
[5] S. Xiang, et al., Journal of Alloys and Compounds, 773 (2019) 387-392.



Another look at properties of AM-processed HEAs via
10 Severe Plastic Deformation

to

Free cutting (i.e., peeling)
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Imposes large shear strains (>>1) in a
narrow deformation zone at high strain
rates (103-105 s-1) and high homologous
temperatures (0.5-0.8 T„).

Deformation conditions: 

Initial depth of cut (to) = 125 micron

Cutting speed (V0) = 0.25-2.5 m/s;

Strain rates = 103-104 s-1



11 Unique deformation modes observed
Material Bucklin

Initial (as-built) CoCrFeMnNi
microstructure — distinct AM layers Low

strain rate

Shear bandin

High
strain rate

Two unusual flow behaviors in a single alloy:
indicative of unique work hardening properties
for HEAs.



1 2 I Defining predictive deformation mode maps

Increasing
Strain

Buckling
flow

Laminar flow
(no instability)

Critical load
for buckling

Shear banding

Shear band j
nucleation stress,

TN a e l'

Temperature, T (or Vo)

Establishing materials-based model to predict flow
transitions from buckling/folding to shear banding.



1 New Simulation Tools for Alloy Design
13

and Optimization
• Molecular Dynamics (MD) effort to enable parametric

alloy optimization

• These tools can also enable new insights about the
stability of HEAs.

increasing entropy
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1 New Simulation Tools for Alloy Design
14 and Optimization
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1,1 Summary

1. AM was successfully utilized with pre-alloyed CoCrFeMnNi powders to produce
bulk geometries.

2. Microstructures of the AM material were significantly refined relative to
conventionally processed HEA with more homogeneous composition.

3. Preliminary mechanical properties of HEAs were relatively insensitive to AM
solidification — a promising outcome for structural applications.

4. Molecular dynamics was demonstrated as a novel approach to evaluate alloy
optimization and rapidly sweep through the HEA composition space.



16 I Corrosion Properties
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17 Additive Manufacturing: Plasma Spray

licitage Powder 8 Camor Gas

Cooling Water smonalmlismalift

Plasma Gas

Electrode #4°Ir

insulabon Nozzle

Spray Stream

Schematic of defect laden microstructure

SPHERICAL PARTICLE
BEFORE IMPACT

SUBSTRATE

Typical Microstructure Of An HVOF Applied Coating

Schematic Of Thermal
Sprayed Coating

1
 Spray Deposit

Substrate

VOID

OXIDE
INCLUSION

UNMELTED
PARTICLE

SUBSTRATE

Herman H 1988 Plasrna-sprayed coatings. Sci. Am. 259, 112-7

Powder imaging within plume

Coating process whereby powder or wire
feedstock is melted and accelerated towards a
substrate to produce a lamellar, defect laden,
thick film deposit (non-structural).
Capable of depositing all classes of materials to
thicknesses ranging from --201.im to several
millimeters.
The high energy density of plasma torches
achieves high temperatures (> 10,000 °C) from
quenching/rapid solidification onto substrate.

Explored air plasma spray with CoCrFeMnNi
powder feedstock.



18 I Defect-laden microstructure

20 pm

CoCrFeMnNi splat — plan view

EHT = 20.00 kV WD = 8.9 mm Signal A = SE2 Width = 571.6 pm

Hi2-her maz. cross-section►

20 pin

CoCrFeMnNi splat — cross-section

EHT = 20.00 kV WD = 10.1 mm Signal A = SE2 Width = 571.6 pm I

Micron-size oxide inclusions

EHT = 20.00 kV WD = 10.1 mm Signal A = VP BSD1 Width = 11.43 pm I
10 pm

EHT = 20.00 kV WD = 10.1 mm Signal A = VP BSD1 Width = 114.3 pm
1 pm



191 Mixed metallic and oxide HEA phases

!NAG: 500x HV 20 kV Px: 0 67Nm 

Inhomogeneous distribution of
alloying constituents with depleted
and enriched regions throughout
coating thickness.
Significant oxygen content
interwoven within coating
(processed in air).
Depleted regions, notably Co, Mn,
and Ni, corresponded with oxygen
enrichment.

Mg, H• 11 P. 1147 rn

MUG, 51, H• U P. L147 rn



201 Mixed metallic and oxide HEA phases

tu

Micron-size oxide inclusions

EHT = 20.00 kV WD = 10.1 mrn ISignal A = VP BSD1 Width = 11.43 prn

• Complex nanoscale multiphase oxide
inclusions dispersed throughout coating.

• Some inclusions appeared to be mostly
depleted in Mn.

• Analysis suggests oxides include those of
Cr,


