This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-5132C

Cross-Site Request Forgery
Challenges and Solutions

PRESENTED BY

Michael Coram, Sandia National Laboratories

— — Qi

m C O I' a m @ S a ﬁ dl a o g O Vv Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 | Why Give This Talk?

° \
(‘ ¥V Build
.6/. Environment Threat

Hardening Modeling

N /’
é Security Best /

Practices l_E: Secure Design

Patterns
@ Security User
Stories
Software ““1 Code
|‘ Security m Analysis

Training 0 \
Correlation Dependency
& Analytics Management
Vulnerability
Management

Pen
Testing

Example of Security

Awareness Training

X Security
X | Testing

Security m
Configuration

Hardening

3 I Why This Topic!?

Cross-Site Request Forgery (CSRF) 1s not one of the OWASP Top 10

o Listed as an “Additional Risk to Consider”

Genesis was a Project Lead asking our Secure Software Group about CSRF
> Developers identified that they lacked protections

° Project Lead wanted to understand whether they were needed prior to deployment

° If so, the Project Lead wanted implementation advice

This 1s EXACTLY what you want to see

4+ | What is CSRF?

CWE-352: Cross-Site Request Forgery Definition

“T'he web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request.”

° https://cwe.mitre.org/data/definitions/352.html

OWASP Definition

“Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated.
CSRF attacks specifically target state-changing requests, not theft of data, since the
attacker has no way to see the response to the forged request.”

° https://www.owasp.org/index.php/Cross-Site_Request_Forgery (CSRF)

| w

Site has been
compromised!

5 | CSRF In Action /‘

unsafe-bank.com gossip-monger.com
No CSRF e (&
protection! Victim logs into a L
their bank

a Victim checks the

latest gossip

Site returns e

malicious content

° Malicious content

forges request to
transfer money

Typically HTML
or JavaScript

Disclaimer: these are
not real sites.

Notable CSRF Attacks

ING Direct (2008)

> Allowed elicit money transfers!

Netflix (2006)

> Allowed an attacker to perform actions such as adding a DVD to the victim's rental queue, changing the
shipping address on the account, or altering the victim's login credentials to fully compromise the account!

YouTube (2008)

o Allowed any attacker to perform nearly all actions of any user!

Paypal (2016)

o attacker [can] change a uset’s profile without permission?

2018 CVEs
° 461 CVEs mentioning CSRE, including Linksys Velop, boot2docker, and HP 2620 Series Network switches?

1. https://en.wikipedia.org/wiki/Cross-site_request_forgery, retrieved April 24, 2019
2. https://threatpost.com/paypal-fixes-csrf-vulnerability-in-paypal-me/119435/, retrieved April 24, 2019
3. https://www.cvedetails.com/vulnerability-list/year-2018/opcsrf-1/csrf.html, retrieved April 24, 2019

7 | Example Attack Vectors

HTML Form submitted by tricking the victim into clicking a button or icon

o “Clickjacking” can be used to overlay the form submit button as a transparent image on top of a
legitimate portion of the page

HTML Form that 1s auto-submitted via JavaScript
> <body onload=“document.forms[0].submit” ...>

JavaScript that uses AJAX to submit the data
° var x = new XMLHttpRequest();
o x.open("POST" "https:/ /unsafe-bank.com/transfer",true);

> x.setRequestHeader("Content-Type", "application/json");
° x.send(JSON.stringify({"account":“attacket"”, "amount":1000}));

In all cases, content from one site is causing a request to be sent to a different site
° The request is coming from the victim’s browser, so appears to be legitimate

| w

s I Same-Origin Policy

All modern browsers protect the user by preventing JavaScript from one site from
reading content provided by another

° Malicious JavaScript from gossip-monger.com cannot access content from unsafe-bank.com
> Content includes the web page contents HTML and Cookies

> Does not include embeddable content such as images

This is why CSRF 1s considered a “blind attack”

o While the malicious content can send the request, it cannot read the response

Same-Origin Policy can be relaxed via Cross-Origin Resource Sharing (CORS)
> Allows cross-origin requests, including updates, via JavaScript

° By default, while JavaScript can make requests, CORS will prevent the requests from being
fulfilled

> When properly configured, CORS will allow JavaScript requests from specific sites

| w

o I Mitigating CSRF Attacks

The general approach is to send information that cannot be known by the attacker

o If unsafe-bank.com includes data in its requests that cannot be read by gossip-monger.com (due
to the same-origin policy), then CSRF attacks will not success

° Typical approach is to provide a random piece of information (CSRF token) with requests that
change state

> Requests that do not change state (e.g. GET) are not an issue for CSRF because the Same-Origin
Policy prevents cross-origin reads

Assumes that this CSRF token cannot be guessed or otherwise known by the
attacker

> Source of entropy matters if the token is randomly generated (which is typical)

> Communication channels must be secure to prevent eavesdropping (e.g. DNS spoofing)

° Other security vulnerabilities (especially cross-site scripting (XSS)) can be used to leak the CSRF
token

| w

0o I CSRF mitigation options

CSRF Token per Request

> Hach form sent to the browser has a unique token returned on submit

CSRF Token per Session

> Every update request to the server includes a unique token provided on login

Double Submit Cookie Pattern
> Hvery update request has a CSRF HTTP Header compared to a CSRF Cookie

Same-Site Cookies

° Special configuration option for cookies that prevents cookies from being sent with requests
generated by other sites

11 I CSRF Mitigation: Token per Request

unsafe-bank.com Victim

1

User request transfer page

Generate
CSRF token

)
o

Return form with CRSF token

—

Submit form with CRSF token

Compare
CSRF token Success!

—_—

gossip-monger.com
»

R

12 I CSRF Mitigation: Token per Request

unsafe-

v

Compare
CSRF token

Submit form without CRSF token

e T e

Failure!

e P

bank.com Victim gossip-monger.com
~ | »

Send malicious content

+—

13 I CSRF Mitigation: Token per Request

Pros
> Most secure option as unique token is created for every form
° Prevents the same form from being resubmitted, preventing replay attacks

° Supported by many web frameworks

Cons
° Back button will not work (which in some cases may be desirable)
° Requires request / response pattern, which is not typically how Single Page Applications work
> Requires that the server keep state (each form and its associated CSRF token)

14 I CSRF Mitigation: Token per Session — Form Based

unsafe-bank.com Victim gossip-monger.com ‘
- »

s

User logs in

Return CSRF token in a cookie

Generate
CSRF token

¢ User request transfer page

Return form

Submit form with CRSF token \ Convert
cookie to

v

CSRF form
Compare parameter
CSRF token Success!

-_—b)

15 I CSRF Mitigation: Token per Session — Form Based

unsafe-bank.com Victim gossip-monger.com

R

User logs in

Return CSRF token in a cookie

Generate
CSRF token

¢ Does not know the
CSRF token

Submit form without CRSF token

- J D
!

Compare
CSRF token Failure!

e P

16 I CSRF Mitigation: Token per Session — JavaScript Based

unsafe-bank.com Victim gossip-monger.com ‘
)~ »
Z‘o
User logs in
Generate
CSRioken Return CSRF token in a cookie
Convert
cookie to
l Submit request with CRSF Header CSRF Header
Compare
CSRF token Success! |

17 I CSRF Mitigation: Token per Session — JavaScript Based

unsafe-bank.com Victim gossip-monger.com

User logs in
Generate . .
CSRF token Return CSRF token in a cookie

¢
o

Send malicious content

-—

Cannot convert
cookie to CSRF
Header

Submit form without CRSF token

v

Compare

CSRF token Failure!

e P

18 I CSRF Mitigation: Token per Session

Pros
> Works with Single Page Applications
° Back button works for form-based applications

° Supported by many web frameworks

Cons
° Lifetime of the CSRF token is longer, providing more time for an attacker to subvert

> Requires that the server keep state (each session and its associated CSRF token)

19 I CSRF Mitigation: Double Submit Cookie

unsafe-bank.com Victim gossip-monger.com ‘
@-.
User logs in
Generate
CSRF token

Return CSRF token in a cookie
Convert
Submit form with CRSF Header cookie to
and the CSRF cookie CSRF Header

CSRF Header
to Cookie Success!

—

Compare I

20 I CSRF Mitigation: Double Submit Cookie

unsafe-bank.com

Generate
CSRF token

Compare
CSRF Header
to Cookie

User logs in

—

Return CSRF token in a cookie

—

Submit form with the CSRF
cookie but not the CSRF Header

Failure!

e P

Victim gossip-monger.com

Cannot read the
CSRF cookie

4—

21 I CSRF Mitigation: Double Submit Cookie

Pros
> No server state (i.e. session) is required
> Works with Single Page Applications

° Supported by many web frameworks

o It 1s the default for Spring Security + Spring Boot

Cons
o Lifetime of the CSRF token is longer, providing more time for an attacker to subvert

o Vulnerable if the attacker can set the CSRF cookie to a known value

° Possible if another site within the same domain (e.g, chatroom.unsafe-bank.com) is vulnerable

2 I CSRF Mitigation: Same-Site Cookie

unsaf-bank.com Victim

User logs in
Generate
Session Return session cookie
cookie I
Submit form with session cookie
Check
Session
Cookie Success!

—

gossip-monger.com
»

R

23 I CSRF Mitigation: Same-Site Cookie

unsafe-bank.com

Generate
session
cookie

Check
session
cookie

User logs in

—

Return session cookie

—

Submit form session cookie
is not attached

Failure!

e P

Victim gossip-monger.com

Cannot send
session cookie

‘—

24 I CSRF Mitigation: Same-Site Cookie

Pros
> Works with all applications, without changing any code
° Can configure cookies to be either strict or lax
° Strict means the cookie will never be sent with cross-origin requests

° Lax cross-origin allows GET and other “safe” HTTP methods are allowed

Cons
° Not supported by older browsers!
> May conflict with cookie-based single-sign on solutions

° In strict mode, clicking a link in a browser will likely return ‘Page Not Found’ if the user is already
logged in

> Newer solution, so not as well supported by existing web frameworks

> Not natively supported in Spring Security, for example, unlike the other CSRF mitigations

1. https://caniuse.com/#search=samesite, retrieved April 24, 2019

25 | Summary

Cross Site Request Forgery (CSRF) attacks are real and still happening
They can be mitigated with common web frameworks providing built-in solutions

Providing details like this to development communities can help keep them thinking
about security

Security can be hard, so having a specialized Software Security Group can be of
benefit

Questions?

