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3 I Why This Topic?

Cross-Site Request Forgery (CSRF) is not one of the OWASP Top 10
o Listed as an 'Additional Risk to Consider"

Genesis was a Project Lead asking our Secure Software Group about CSRF
o Developers identified that they lacked protections
o Project Lead wanted to understand whether they were needed prior to deployment
o If so, the Project Lead wanted implementation advice

This is EXACTLY what you want to see



4 I What is CSRF?

CWE-352: Cross-Site Request Forgery Definition

"The web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request."
0 https://cwe.mitre.org/data/definitions/352.html 

OWASP Definition

"Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated.
CSRF attacks specifically target state-changing requests, not theft of data, since the
attacker has no way to see the response to the forged request."
° https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)



5 CSRF In Action

unsafe-bank.com

No CSRF
protection!

Malicious content
forges request to
transfer money

Site has been
compromised!

gossip-monger.com

Victim logs into •
their bank

Victim checks the
latest gossip

Victim

Site returns
malicious content

Typically HTML
or JavaScript

Disclaimer: these are
not real sites.



6 Notable CSRF Attacks

ING Direct (2008)

O Allowed elicit money transfers1

Netflix (2006)

O Allowed an attacker to perform actions such as adding a DVD to the victim's rental queue, changing the
shipping address on the account, or altering the victim's login credentials to fully compromise the account1

YouTube (2008)

O Allowed any attacker to perform nearly all actions of any user1

Paypal (2016)

o attacker [can] change a user's profile without permission2

2018 CVEs

461 CVEs mentioning CSRF, including Linksys Velop, boot2docker, and HP 2620 Series Network switches3

1. https://en.wikipedia.org/wiki/Cross-site_request_forgery, retrieved April 24, 2019

2. https: / /th reatpost.com / paypal-fixes-csrf-vulnerability-in-paypal-me/ 119435/  , retrieved April 24, 2019

3. https://www.cvedetails.com/vulnerability-list/year-2018/opcsrf-1/csrf.html, retrieved April 24, 2019
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7 I Example Attack Vectors

HTML Form submitted by tricking the victim into clicking a button or icon
O "Clickjackine can be used to overlay the form submit button as a transparent image on top of a
legitimate portion of the page

HTML Form that is auto-submitted via JavaScript
o <body onload="document.forms[0].submit" ...>

JavaScript that uses AJAX to submit the data
O var x = new XXILHapRequest();
O x.open("POST","https://unsafe-bank.com/transfer",true),

o x.setRequestHeader("Content-Type", "application/json"),

o x.send(JSON.stringify(raccount":"attacker", "amount":10001));

In all cases, content from one site is causing a request to be sent to a different site
o The request is coming from the victim's browser, so appears to be legitimate



8 Same-Origin Policy

All modern browsers protect the user by preventing JavaScript from one site from
reading content provided by another
O Malicious JavaScript from gossip-monger.com cannot access content from unsafe-bank.com
O Content includes the web page contents HTML and Cookies
O Does not include embeddable content such as images

This is why CSRF is considered a "blind attack"
O While the malicious content can send the request, it cannot read the response

Same-Origin Policy can be relaxed via Cross-Origin Resource Sharing (CORS)
O Allows cross-origin requests, including updates, via JavaScript
O By default, while JavaScript can make requests, CORS will prevent the requests from being
fulfilled

O When properly configured, CORS will allow JavaScript requests from specific sites



9 I Mitigating CSRF Attacks

The general approach is to send information that cannot be known by the attacker
O If unsafe-bank.com includes data in its requests that cannot be read by gossip-monger.com (due
to the same-origin policy), then CSRF attacks will not success

O Typical approach is to provide a random piece of information (CSRF token) with requests that
change state

o Requests that do not change state (e.g. GET) are not an issue for CSRF because the Same-Origin
Policy prevents cross-origin reads

Assumes that this CSRF token cannot be guessed or otherwise known by the
attacker
o Source of entropy matters if the token is randomly generated (which is typical)
O Communication channels must be secure to prevent eavesdropping (e.g. DNS spoofing)
O Other security vulnerabilities (especially cross-site scripting (XSS)) can be used to leak the CSRF
token



10 I CSRF mitigation options

CSRF Token per Request
o Each form sent to the browser has a unique token returned on submit

CSRF Token per Session
o Every update request to the server includes a unique token provided on login

Double Submit Cookie Pattern
o Every update request has a CSRF HTTP Header compared to a CSRF Cookie

Same-Site Cookies
o Special configuration option for cookies that prevents cookies from being sent with requests
generated by other sites



11 CSRF Mitigation:Token per Request

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

User request transfer page

Return form with CRSF token

Submit form with CRSF token

Success!

Victim gossip-monger.com
•

Al-



12 CSRF Mitigation:Token per Request

unsafe-bank.com

Compare
CSRF token

Submit form without CRSF token

Failure!

Victim gossip-monger.com
•

Send malicious content



13 I CSRF Mitigation:Token per Request

Pros
o Most secure option as unique token is created for every form
o Prevents the same form from being resubmitted, preventing replay attacks

o Supported by many web frameworks

Cons
o Back button will not work (which in some cases may be desirable)

o Requires request / response pattern, which is not typically how Single Page Applications work

o Requires that the server keep state (each form and its associated CSRF token)



14 CSRF Mitigation:Token per Session — Form Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

User logs in

Return CSRF token in a cookie

User request transfer page

Return form

Submit form with CRSF token

Success!

Victim gossip-monger.com
•

Al-

Convert
cookie to
CSRF form
parameter



15 CSRF Mitigation:Token per Session — Form Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

4-

Victim

User logs in

Return CSRF token in a cookie

4. Submit form without CRSF token

Failure!

gossip-monger.com
•

Arel'

Does not know the
CSRF token



16 CSRF Mitigation:Token per Session — JavaScript Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

User logs in

Return CSRF token in a cookie

Submit request with CRSF Header

Victim

Success!

gossip-monger.com

Convert
cookie to
CSRF Header



17 CSRF Mitigation:Token per Session — JavaScript Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

Victim

User logs in

Return CSRF token in a cookie

Submit form without CRSF token

Failure!

gossip-monger.com
•

Send malicious content

Cannot convert
cookie to CSRF
Header



18 I CSRF Mitigation:Token per Session

Pros
o Works with Single Page Applications

o Back button works for form-based applications

o Supported by many web frameworks

Cons
o Lifetime of the CSRF token is longer, providing more time for an attacker to subvert

o Requires that the server keep state (each session and its associated CSRF token)



19 CSRF Mitigation: Double Submit Cookie

unsafe-bank.com

Generate
CSRF token

Compare
CSRF Header
to Cookie

User logs in

Return CSRF token in a cookie

Submit form with CRSF Header
and the CSRF cookie

Success!

Victim gossip-monger.com
•

Convert
cookie to
CSRF Header



20 CSRF Mitigation: Double Submit Cookie

unsafe-bank.com

Generate
CSRF token

Compare
CSRF Header
to Cookie

Victim

User logs in

Return CSRF token in a cookie

Submit form with the CSRF
cookie but not the CSRF Header

Failure!

gossip-monger.com
•

Cannot read the
CSRF cookie



21 CSRF Mitigation: Double Submit Cookie

Pros
o No server state (i.e. session) is required

O Works with Single Page Applications

o Supported by many web frameworks

0 It is the default for Spring Security + Spring Boot

Cons
O Lifetime of the CSRF token is longer, providing more time for an attacker to subvert
O Vulnerable if the attacker can set the CSRF cookie to a known value

o Possible if another site within the same domain (e.g. chatroom.unsafe-bank.com) is vulnerable



22 CSRF Mitigation: Same-Site Cookie

unsafe-bank.com

Generate
Session
cookie

Check
Session
Cookie

User logs in

Return session cookie

Submit form with session cookie

Success!

Victim gossip-monger.com



23 CSRF Mitigation: Same-Site Cookie

unsafe-bank.com

Generate
session
cookie

Check
session
cookie

Victim

User logs in

Return session cookie

Submit form session cookie
is not attached

Failure!

gossip-monger.com
•

Cannot send
session cookie



24 CSRF Mitigation: Same-Site Cookie

Pros
o Works with all applications, without changing any code

o Can configure cookies to be either strict or lax

o Strict means the cookie will never be sent with cross-origin requests

O Lax cross-origin allows GET and other "safe" HTTP methods are allowed

Cons
o Not supported by older browsers1

O May conflict with cookie-based single-sign on solutions

O In strict mode, clicking a link in a browser will likely return 'Page Not Found' if the user is already
logged in

o Newer solution, so not as well supported by existing web frameworks

o Not natively supported in Spring Security, for example, unlike the other CSRF mitigations

1. https://caniuse.com/#search=samesite, retrieved April 24, 2019

•



25 I Summary

Cross Site Request Forgery (CSRF) attacks are real and still happening

They can be mitigated with common web frameworks providing built-in solutions

Providing details like this to development communities can help keep them thinking
about security

Security can be hard, so having a specialized Software Security Group can be of
benefit




