
Cross-Site Request Forgery
Challenges and Solutions

PRESENTED BY

Michael Coram, Sandia National Laboratories

mcoram@sandia.gov

1

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-5132C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

\

2 Why Give This Talk?

• Example of Security
6. Awareness Training

- - -
- - -
- - -

D
r'',• Build
• • Environmen

f-. Hardening

Security Best
Practices

Security User
Stories

ltr
Software
Security
Training

th
‘., SECURITY FROM THE START

Vulnerability
Management

* 4°$(<4
0),

Pen
Testing a

Security
Configuration
Hardening

1
1
/

0 6•,$)4,+

i

Correlation
Et Analytics

Threat
Modeling

111 Secure Design
Patterns

1

• • •

</>

Security
Testing

Code
Analysis

Dependency
Management

eilee

3 I Why This Topic?

Cross-Site Request Forgery (CSRF) is not one of the OWASP Top 10
o Listed as an 'Additional Risk to Consider"

Genesis was a Project Lead asking our Secure Software Group about CSRF
o Developers identified that they lacked protections
o Project Lead wanted to understand whether they were needed prior to deployment
o If so, the Project Lead wanted implementation advice

This is EXACTLY what you want to see

4 I What is CSRF?

CWE-352: Cross-Site Request Forgery Definition

"The web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request."
0 https://cwe.mitre.org/data/definitions/352.html

OWASP Definition

"Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated.
CSRF attacks specifically target state-changing requests, not theft of data, since the
attacker has no way to see the response to the forged request."
° https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

5 CSRF In Action

unsafe-bank.com

No CSRF
protection!

Malicious content
forges request to
transfer money

Site has been
compromised!

gossip-monger.com

Victim logs into •
their bank

Victim checks the
latest gossip

Victim

Site returns
malicious content

Typically HTML
or JavaScript

Disclaimer: these are
not real sites.

6 Notable CSRF Attacks

ING Direct (2008)

O Allowed elicit money transfers1

Netflix (2006)

O Allowed an attacker to perform actions such as adding a DVD to the victim's rental queue, changing the
shipping address on the account, or altering the victim's login credentials to fully compromise the account1

YouTube (2008)

O Allowed any attacker to perform nearly all actions of any user1

Paypal (2016)

o attacker [can] change a user's profile without permission2

2018 CVEs

461 CVEs mentioning CSRF, including Linksys Velop, boot2docker, and HP 2620 Series Network switches3

1. https://en.wikipedia.org/wiki/Cross-site_request_forgery, retrieved April 24, 2019

2. https: / /th reatpost.com / paypal-fixes-csrf-vulnerability-in-paypal-me/ 119435/ , retrieved April 24, 2019

3. https://www.cvedetails.com/vulnerability-list/year-2018/opcsrf-1/csrf.html, retrieved April 24, 2019

■

1
1

7 I Example Attack Vectors

HTML Form submitted by tricking the victim into clicking a button or icon
O "Clickjackine can be used to overlay the form submit button as a transparent image on top of a
legitimate portion of the page

HTML Form that is auto-submitted via JavaScript
o <body onload="document.forms[0].submit" ...>

JavaScript that uses AJAX to submit the data
O var x = new XXILHapRequest();
O x.open("POST","https://unsafe-bank.com/transfer",true),

o x.setRequestHeader("Content-Type", "application/json"),

o x.send(JSON.stringify(raccount":"attacker", "amount":10001));

In all cases, content from one site is causing a request to be sent to a different site
o The request is coming from the victim's browser, so appears to be legitimate

8 Same-Origin Policy

All modern browsers protect the user by preventing JavaScript from one site from
reading content provided by another
O Malicious JavaScript from gossip-monger.com cannot access content from unsafe-bank.com
O Content includes the web page contents HTML and Cookies
O Does not include embeddable content such as images

This is why CSRF is considered a "blind attack"
O While the malicious content can send the request, it cannot read the response

Same-Origin Policy can be relaxed via Cross-Origin Resource Sharing (CORS)
O Allows cross-origin requests, including updates, via JavaScript
O By default, while JavaScript can make requests, CORS will prevent the requests from being
fulfilled

O When properly configured, CORS will allow JavaScript requests from specific sites

9 I Mitigating CSRF Attacks

The general approach is to send information that cannot be known by the attacker
O If unsafe-bank.com includes data in its requests that cannot be read by gossip-monger.com (due
to the same-origin policy), then CSRF attacks will not success

O Typical approach is to provide a random piece of information (CSRF token) with requests that
change state

o Requests that do not change state (e.g. GET) are not an issue for CSRF because the Same-Origin
Policy prevents cross-origin reads

Assumes that this CSRF token cannot be guessed or otherwise known by the
attacker
o Source of entropy matters if the token is randomly generated (which is typical)
O Communication channels must be secure to prevent eavesdropping (e.g. DNS spoofing)
O Other security vulnerabilities (especially cross-site scripting (XSS)) can be used to leak the CSRF
token

10 I CSRF mitigation options

CSRF Token per Request
o Each form sent to the browser has a unique token returned on submit

CSRF Token per Session
o Every update request to the server includes a unique token provided on login

Double Submit Cookie Pattern
o Every update request has a CSRF HTTP Header compared to a CSRF Cookie

Same-Site Cookies
o Special configuration option for cookies that prevents cookies from being sent with requests
generated by other sites

11 CSRF Mitigation:Token per Request

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

User request transfer page

Return form with CRSF token

Submit form with CRSF token

Success!

Victim gossip-monger.com
•

Al-

12 CSRF Mitigation:Token per Request

unsafe-bank.com

Compare
CSRF token

Submit form without CRSF token

Failure!

Victim gossip-monger.com
•

Send malicious content

13 I CSRF Mitigation:Token per Request

Pros
o Most secure option as unique token is created for every form
o Prevents the same form from being resubmitted, preventing replay attacks

o Supported by many web frameworks

Cons
o Back button will not work (which in some cases may be desirable)

o Requires request / response pattern, which is not typically how Single Page Applications work

o Requires that the server keep state (each form and its associated CSRF token)

14 CSRF Mitigation:Token per Session — Form Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

User logs in

Return CSRF token in a cookie

User request transfer page

Return form

Submit form with CRSF token

Success!

Victim gossip-monger.com
•

Al-

Convert
cookie to
CSRF form
parameter

15 CSRF Mitigation:Token per Session — Form Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

4-

Victim

User logs in

Return CSRF token in a cookie

4. Submit form without CRSF token

Failure!

gossip-monger.com
•

Arel'

Does not know the
CSRF token

16 CSRF Mitigation:Token per Session — JavaScript Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

User logs in

Return CSRF token in a cookie

Submit request with CRSF Header

Victim

Success!

gossip-monger.com

Convert
cookie to
CSRF Header

17 CSRF Mitigation:Token per Session — JavaScript Based

unsafe-bank.com

Generate
CSRF token

Compare
CSRF token

Victim

User logs in

Return CSRF token in a cookie

Submit form without CRSF token

Failure!

gossip-monger.com
•

Send malicious content

Cannot convert
cookie to CSRF
Header

18 I CSRF Mitigation:Token per Session

Pros
o Works with Single Page Applications

o Back button works for form-based applications

o Supported by many web frameworks

Cons
o Lifetime of the CSRF token is longer, providing more time for an attacker to subvert

o Requires that the server keep state (each session and its associated CSRF token)

19 CSRF Mitigation: Double Submit Cookie

unsafe-bank.com

Generate
CSRF token

Compare
CSRF Header
to Cookie

User logs in

Return CSRF token in a cookie

Submit form with CRSF Header
and the CSRF cookie

Success!

Victim gossip-monger.com
•

Convert
cookie to
CSRF Header

20 CSRF Mitigation: Double Submit Cookie

unsafe-bank.com

Generate
CSRF token

Compare
CSRF Header
to Cookie

Victim

User logs in

Return CSRF token in a cookie

Submit form with the CSRF
cookie but not the CSRF Header

Failure!

gossip-monger.com
•

Cannot read the
CSRF cookie

21 CSRF Mitigation: Double Submit Cookie

Pros
o No server state (i.e. session) is required

O Works with Single Page Applications

o Supported by many web frameworks

0 It is the default for Spring Security + Spring Boot

Cons
O Lifetime of the CSRF token is longer, providing more time for an attacker to subvert
O Vulnerable if the attacker can set the CSRF cookie to a known value

o Possible if another site within the same domain (e.g. chatroom.unsafe-bank.com) is vulnerable

22 CSRF Mitigation: Same-Site Cookie

unsafe-bank.com

Generate
Session
cookie

Check
Session
Cookie

User logs in

Return session cookie

Submit form with session cookie

Success!

Victim gossip-monger.com

23 CSRF Mitigation: Same-Site Cookie

unsafe-bank.com

Generate
session
cookie

Check
session
cookie

Victim

User logs in

Return session cookie

Submit form session cookie
is not attached

Failure!

gossip-monger.com
•

Cannot send
session cookie

24 CSRF Mitigation: Same-Site Cookie

Pros
o Works with all applications, without changing any code

o Can configure cookies to be either strict or lax

o Strict means the cookie will never be sent with cross-origin requests

O Lax cross-origin allows GET and other "safe" HTTP methods are allowed

Cons
o Not supported by older browsers1

O May conflict with cookie-based single-sign on solutions

O In strict mode, clicking a link in a browser will likely return 'Page Not Found' if the user is already
logged in

o Newer solution, so not as well supported by existing web frameworks

o Not natively supported in Spring Security, for example, unlike the other CSRF mitigations

1. https://caniuse.com/#search=samesite, retrieved April 24, 2019

•

25 I Summary

Cross Site Request Forgery (CSRF) attacks are real and still happening

They can be mitigated with common web frameworks providing built-in solutions

Providing details like this to development communities can help keep them thinking
about security

Security can be hard, so having a specialized Software Security Group can be of
benefit

