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3 I Why This Topic!?

Cross-Site Request Forgery (CSRF) 1s not one of the OWASP Top 10

o Listed as an “Additional Risk to Consider”

Genesis was a Project Lead asking our Secure Software Group about CSRF
> Developers identified that they lacked protections

° Project Lead wanted to understand whether they were needed prior to deployment

° If so, the Project Lead wanted implementation advice

This 1s EXACTLY what you want to see




4+ | What is CSRF?

CWE-352: Cross-Site Request Forgery Definition

“T'he web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request.”

° https://cwe.mitre.org/data/definitions/352.html

OWASP Definition

“Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated.
CSRF attacks specifically target state-changing requests, not theft of data, since the
attacker has no way to see the response to the forged request.”

° https://www.owasp.org/index.php/Cross-Site_Request_Forgery (CSRF)
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5 | CSRF In Action /‘
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Notable CSRF Attacks

ING Direct (2008)

> Allowed elicit money transfers!

Netflix (2006)

> Allowed an attacker to perform actions such as adding a DVD to the victim's rental queue, changing the
shipping address on the account, or altering the victim's login credentials to fully compromise the account!

YouTube (2008)

o Allowed any attacker to perform nearly all actions of any user!

Paypal (2016)

o attacker [can] change a uset’s profile without permission?

2018 CVEs
° 461 CVEs mentioning CSRE, including Linksys Velop, boot2docker, and HP 2620 Series Network switches?

1. https://en.wikipedia.org/wiki/Cross-site_request_forgery, retrieved April 24, 2019
2. https://threatpost.com/paypal-fixes-csrf-vulnerability-in-paypal-me/119435/, retrieved April 24, 2019
3. https://www.cvedetails.com/vulnerability-list/year-2018/opcsrf-1/csrf.html, retrieved April 24, 2019




7 | Example Attack Vectors

HTML Form submitted by tricking the victim into clicking a button or icon

o “Clickjacking” can be used to overlay the form submit button as a transparent image on top of a
legitimate portion of the page

HTML Form that 1s auto-submitted via JavaScript
> <body onload=“document.forms[0].submit” ...>

JavaScript that uses AJAX to submit the data
° var x = new XMLHttpRequest();
o x.open("POST" "https:/ /unsafe-bank.com/transfer",true);

> x.setRequestHeader("Content-Type", "application/json");
° x.send(JSON.stringify({"account":“attacket"”, "amount":1000}));

In all cases, content from one site is causing a request to be sent to a different site
° The request is coming from the victim’s browser, so appears to be legitimate
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s I Same-Origin Policy

All modern browsers protect the user by preventing JavaScript from one site from
reading content provided by another

° Malicious JavaScript from gossip-monger.com cannot access content from unsafe-bank.com
> Content includes the web page contents HTML and Cookies

> Does not include embeddable content such as images

This is why CSRF 1s considered a “blind attack”

o While the malicious content can send the request, it cannot read the response

Same-Origin Policy can be relaxed via Cross-Origin Resource Sharing (CORS)
> Allows cross-origin requests, including updates, via JavaScript

° By default, while JavaScript can make requests, CORS will prevent the requests from being
fulfilled

> When properly configured, CORS will allow JavaScript requests from specific sites

| w



o I Mitigating CSRF Attacks

The general approach is to send information that cannot be known by the attacker

o If unsafe-bank.com includes data in its requests that cannot be read by gossip-monger.com (due
to the same-origin policy), then CSRF attacks will not success

° Typical approach is to provide a random piece of information (CSRF token) with requests that
change state

> Requests that do not change state (e.g. GET) are not an issue for CSRF because the Same-Origin
Policy prevents cross-origin reads

Assumes that this CSRF token cannot be guessed or otherwise known by the
attacker

> Source of entropy matters if the token is randomly generated (which is typical)

> Communication channels must be secure to prevent eavesdropping (e.g. DNS spoofing)

° Other security vulnerabilities (especially cross-site scripting (XSS)) can be used to leak the CSRF
token

| w



0o I CSRF mitigation options

CSRF Token per Request

> Hach form sent to the browser has a unique token returned on submit

CSRF Token per Session

> Every update request to the server includes a unique token provided on login

Double Submit Cookie Pattern
> Hvery update request has a CSRF HTTP Header compared to a CSRF Cookie

Same-Site Cookies

° Special configuration option for cookies that prevents cookies from being sent with requests
generated by other sites




11 I CSRF Mitigation: Token per Request
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12 I CSRF Mitigation: Token per Request
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13 I CSRF Mitigation: Token per Request

Pros
> Most secure option as unique token is created for every form
° Prevents the same form from being resubmitted, preventing replay attacks

° Supported by many web frameworks

Cons
° Back button will not work (which in some cases may be desirable)
° Requires request / response pattern, which is not typically how Single Page Applications work
> Requires that the server keep state (each form and its associated CSRF token)




14 I CSRF Mitigation: Token per Session — Form Based
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15 I CSRF Mitigation: Token per Session — Form Based
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16 I CSRF Mitigation: Token per Session — JavaScript Based

unsafe-bank.com Victim gossip-monger.com ‘
)~ »
Z‘o
User logs in
Generate
CSRioken Return CSRF token in a cookie
Convert
cookie to
l Submit request with CRSF Header CSRF Header
Compare
CSRF token Success! |



17 I CSRF Mitigation: Token per Session — JavaScript Based
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18 I CSRF Mitigation: Token per Session

Pros
> Works with Single Page Applications
° Back button works for form-based applications

° Supported by many web frameworks

Cons
° Lifetime of the CSRF token is longer, providing more time for an attacker to subvert

> Requires that the server keep state (each session and its associated CSRF token)




19 I CSRF Mitigation: Double Submit Cookie
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20 I CSRF Mitigation: Double Submit Cookie

unsafe-bank.com

Generate
CSRF token

Compare
CSRF Header
to Cookie

User logs in

—

Return CSRF token in a cookie

—

Submit form with the CSRF
cookie but not the CSRF Header

Failure!

e P

Victim gossip-monger.com

Cannot read the
CSRF cookie

4—



21 I CSRF Mitigation: Double Submit Cookie

Pros
> No server state (i.e. session) is required
> Works with Single Page Applications

° Supported by many web frameworks

o It 1s the default for Spring Security + Spring Boot

Cons
o Lifetime of the CSRF token is longer, providing more time for an attacker to subvert

o Vulnerable if the attacker can set the CSRF cookie to a known value

° Possible if another site within the same domain (e.g, chatroom.unsafe-bank.com) is vulnerable




2 I CSRF Mitigation: Same-Site Cookie
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23 I CSRF Mitigation: Same-Site Cookie
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24 I CSRF Mitigation: Same-Site Cookie

Pros
> Works with all applications, without changing any code
° Can configure cookies to be either strict or lax
° Strict means the cookie will never be sent with cross-origin requests

° Lax cross-origin allows GET and other “safe” HTTP methods are allowed

Cons
° Not supported by older browsers!
> May conflict with cookie-based single-sign on solutions

° In strict mode, clicking a link in a browser will likely return ‘Page Not Found’ if the user is already
logged in

> Newer solution, so not as well supported by existing web frameworks

> Not natively supported in Spring Security, for example, unlike the other CSRF mitigations

1. https://caniuse.com/#search=samesite, retrieved April 24, 2019




25 | Summary

Cross Site Request Forgery (CSRF) attacks are real and still happening
They can be mitigated with common web frameworks providing built-in solutions

Providing details like this to development communities can help keep them thinking
about security

Security can be hard, so having a specialized Software Security Group can be of
benefit




Questions?




