This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-5102C

Secure Software Development
Practices at Sandia National
Laboratories

PRESENTED BY

Angela (Ang) Rivas and Michael Coram

acrivas@sandia.gov mcoram(@sandia.gov

Describing the Current State of Software Security

Ponemon Institute State of

Application Security Risk

Management (2016)

* Security pros view the application

layer as extremely vulnerable

* Lack of application security testing
* Only 14% do so throughout the

development life cycle
* 46% don’t test at all

Figure 7. Where do security compromises most likely occur?
100 points allocated based on the level of risk presented by each layer

35 32
30

25
25

20 17

10 -
5 l

5

_

Applications Network Human Data Physical
negligence

Operating
systems

Building Security In Maturity
Model (BSIMM) (2017)

* 33% of firms use threat modeling
to identify potential attackers

* 62% of firms surveyed use internal
penetration testing tools on their
projects

* Only 6% of the firms customize
these tools to accommodate
changing environments or specific
needs

* 4% of respondents state their projects
use containers specifically to improve
their application security posture

* 4% of the organizations use
application behavior monitoring and
diagnostics

4+ I Understanding Software Security at Sandia

Key Insights from Survey of the State ot Software Security
Practices at Sandia National Laboratories

* Developers want an official source for information and

resources
* Developers want relevant training

* Some projects use security scanning tools, but do so
independently and with little or no guidance to evaluate

results

s | Formalizing Software Security at Sandia

Mission:
Secure software, from the start.
Vision:
We build highly adaptive, self-securing, cyber resilient software and data systems.

Establish a Software Enable a culture of
Security Group secure software
(SSG) development

Provide enterprise
services.

Build a program to develop technologies and methods
to secure data and software from cyber-attacks

s | Reviewing Existing Software Development Lifecycles

Requirement
Analysis

Requirements

System Design

= Specifications
Implementation

High Leve Design
Testing

Low Lever Design

Deployment

e
S

Woaterfall

ANALYSIS

IMPLEMENTATION

Iterative

https://existek.com/blog/sdlc-models/

/,

DevOps

Test and Feedback
Development

Agile

https://www.alliedcode.com/software-devops/devops-graphic/

Acceptance Testing

System Testing

Integration Testing

Unit Testing

Architecture and Design

Redefining the Secure Software Development Lifecycle (SDLC)

® &
]' V Build \
® @ Environment \ Threat

Hardening Modeling

[N /I
é Security Best |

Practices I_E: Secure Design

Patterns
@ Security User
Stories
Software Code
|‘ Security m Analysis

Training .K' /" \
Correlation Dependency
& Analytics Management
Vulnerability
Management

Testing

X Security
X | Testing

Security u
Configuration

Hardening

s | Empower development teams to be software security 4
champions by offering awareness and technical training.

eSoftware Security eDeveloper Technical

Awareness Training Training

eDeveloper Secure

Software
; eDeveloper Deep
Development Lifecycle Dive Dialosues
(SDLC) Training and &
Application

[W]e should be spending money on security training r’x e
for developers. These are people who can be taught e
expertise in a fast-changing environment, and this is a Security Best
situation where raising the average behavior S
increases the security of the overall system. gecirnyliney

\ Bruce Schneie-r/ = I

! lnggy Security

. Trainin
v ;

s | ldentify and account for software security risks and activities
through user stories and tasks.

Think about how you will address security topics (CIA triad, authentication,
etc.).

Even if you aren’t working in an agile environment, understand what the
bad guys might want to do (internal or external) and document it.

Security user stories, evil user stories, and abuser stories are all ways of
capturing malicious ways your system can be used (so you are aware and can

fix it).

j As a user, | should only be able to see my
. - information and not other employees’

dib [

As a foreign adversary, | want to covertly
and subtlety change how the system works

®
\ Build

@ Environment
Hardening

As a malicious insider, | want to steal classified Security Best

Practices

[
‘-t. information to which | am unauthorized (@ e

Stories

]‘ Software
e Security

Training

10

Ensure that best practices for secure coding are available and -
implemented in development projects. I

National

Establish secure design best practices that can be applied to Gl

#SecureSoftware

.

any project.

Establish language and framework specific guidance for
security

> Memory management issues differ substantially between Java

and C/C++
> Mitigating CSRF will differ between Struts and Spring

Provide checklist templates for secure code reviews

> Encourage teams to augment based on their security risks and
level of experience

age Risk in Third-party

Develop template applications, examples, and reference
arChiteCtureS securesoftware.sandia.gov

> Make it easy for developers to add security from the start

[

(‘ \. Build

Y Environment
o Hardening |

Make training materials publicly available and vet resources
for developers S

Security Best
Practices

Publish this information on a Secure Software Portal

Security User
Stories

Lead an awareness campaign (#SecureSoftware)

Software

W Security
Training

the application.

Hardening is something that you have to do to prevent malicious injection

of code.

Restrict who can submit code and run builds.

Protect your test environments, especially if they include real data

o Use containers and VIMs.

° Disable unnecessary accounts, software, services, and ports.

Harden development environments used to build and the test 4

Maintain and backup logs (preferably with monitoring and alerts).

Encrypt data at rest and in motion.

My MAGAZINE EVENTS « INSIGHT +
aaaaa

’ N Build
@ Environment

[J
« Hardening

N
Security Best

Practices

Security User
Stories

Software
W Security

Training

2 | Collaborate with development teams to perform threat
modeling on the system’s architecture.

Identify Process

Diagram Validate

Threats Threats

* Whatareyou <+ Whatcango <+ Whatareyou < Validate

building? wrong? doing to previous steps
defend against
threats? * Report

4)

@ THISEy If we had our hands tied behind our backs (we don’t) and could do only one thing to
N odeling) improve software security—threat modeling, better security code reviews, or better
' security testing—we would do threat modeling every day of the week.
Michael Howard and Steve Lipner

5 A

Secure Design
Patterns

3 | Provide a library of secure design patterns that can be utilized
by development teams to address or mitigate security
vulnerabilities and weaknesses.

Design patterns are a way of providing a general solution to a
security problem, offering one more way to improve software

security early on (in the design phase) where it’s cheaper to fix,
rather than later in the lifecycle.

Patterns may be applied to architecture, design, or

development.

$6,000
$5,000
$4,000
$3,000
$2,000
$1,000

$0

@ Threat

| Modeling

Secure Design Y
Patterns

$250
=

Requirements

Cost per Defect*
$5,000

$1,250

=
L

Coding and After Release

Testing

Design

Where Defect is Found

Capers Jones, A Short History of the Cost Per Defect Metric

|

14

Provide tools and assistance to development teams to help
them analyze the code and application to find vulnerabilities as
the software is developed.

Use Static Analysis Security Testing (SAST) tools
> Automatically finds potential defects, but resolution requires expertise
> Will not find all security vulnerabilities, so encourage additional analysis
° Likely to have many false positives, so help teams find the real issues

> Help developers integrate them into both developer tools 7=~ TN\ and
the build environment (e.g. CI/CD)

Use Dynamic Analysis Security Testing (DAST) toc
° Scans running software, potentially finding issues SAST miu: Code ¥
°> Allow developers to run ad hoc scans to identify defects ear] Analysis

° Integrate into the build environment

. . Dependency
Perform manual s€curity reviews Management

> Encourage teams to integrate into existing code review pre < .,}::

° Provide checklists to help teams perform reviews

o Assist in focused reviews of security significant componet

s | Ensure teams are managing their dependencies and mitigating
vulnerabilities

Open Source Software 1s a major risk
° 60% percent of enterprise codebases contain open-source vulnerabilities!
° 88% increase in application vulnerabilities between 2016 and 20182
° 78% of vulnerabilities are found in indirect dependencies?

° In the average application, over a third of the code base is open source’

Utilize Software Component Analysis (SCA) software

° Integrate into the build environment (CI/CD) to detect issues priot to
deployment

Code
Analysis

> Ensure proper mitigation of security issues

° Continually check software for new vulnerabilities

Create a curated repository of trusted software

> Do not let vulnerable software into your environment Dependency

°> Developers and build tools download libraries from the trusted Management
repository rather than the Internet

> Make sure to keep the repository updated!

[17 https://www.zdnet.com/article/60-percent-of-codebases-contain-open-source-vulnerabilities/
[2] https://snyk.io/opensourcesecurity-2019/
[3] https://www.csoonline.com/article/3157377/open-source-software-security-challenges-persist.html

16

Develop and execute security tests specific to the application,

such as access control tests

Test early and often — even though it’s a phase
of the secure SDLC, testing should be
integrated throughout the lifecycle

Includes functional, non-functional, and
regression

Think with an adversarial or “let’s break it”’
mindset

Use the right tools — especially to automate!

Remember those use and abuse cases? Test
them!

Security testing can help you find areas for
improvement — so that in addition to being
more secure, you can also be more efficient!

@owasp ‘ Testing Guide
release

Praject Leaders: Matteo Meucel and Andrew Muller

Security
Testing

7 I Help teams configure their deployment environments to be
hardened against attacks.

Use Detense in Depth

> Do not rely on a single defense

Keep up with security patches
° Patch Tuesday can lead to Exploit Wednesday

Control who has administrative permissions
> Consider the entire stack — container, virtual machine, host machine

> Use Principle of Least Privilege

Reduce the attack surface
° Use firewalls, including Web Application Firewalls

Vulnerability °'Turn off unnecessary services

Management

Testing

Security
Configuration
\ Hardening

Insecure deployment environments can make
the most secure software vulnerable

s | Perform independent penetration testing as a final validation
that security issues have been resolved.

For security significant and high risk applications, penetration
testing by skilled individuals can help validate

> Recommend that a specialized team, independent of the Secure Software
Group, perform this activity

Consider “light red teaming” for applications with lower risk

o Utilize the Secure Software Group to grow their skills, encourage an
adversarial mindset, and validate work performed in prior steps

Following this Secure Software Development lifecycle
minimizes the chance the pen testing will find an issue

° A final check, performed as an attacker, can provide validation and
el reassurance

Management

\Testing Go ahead, wait for me to find the 6
vulnerabilities. Pen testing is too hard.
Security

Configuration
Hardening

9 I Encourage teams to manage vulnerabilities throughout the
application’s lifetime

Need to continue to monitor for vulnerabilities and address them
> New vulnerabilities in Open Source Software can be reported
> Users can find security significant bugs

o Attackers can find issues that were missed

Bug fixes and new features will be needed

° Consider risk of introducing security vulnerabilities, especially for emergency
fixes

° Repeat the security software lifecycle where possible, abbreviating where
appropriate based on risk

Monitor logs

° If a zero-day exists, logs may be the only evidence

i \ ° [Look for abnormal behavior — intrusion detection

Just because you deployed, does not mean

you are done with security

Security
Configuration

Hardening

20

Collect data throughout the process, analyze it, and correlate
with opportunities for improvement.

Continually improve your secure development practices

° Perform root cause analysis to determine how a vulnerability was introduced

> Consider how the issue could have been found earlier or avoided completely

° Focus on making the process easier for developers to follow

> Automate and optimize where possible

Share lessons learned across teams
° Capture new security best practices
° Identify common causes of vulnerabilities and methods to address

° Share tips and tricks for using security tools

Identify areas for future research
> Keep current on new tools, techniques, and threats
° Develop your own tools or extend existing ones to better meet yo

o Drive the state-of-the-art forward

Correlation
& Analytics

Your adversaries will not rest,

so neither should you

B

-

21 I Summary

We are leading change by moving security earlier in the
development process and providing a comprehensive approach
that integrates and automates security through the
development lifecycle.

By following these steps, regardless of the programming
methodology or framework being used, SNL believes that the
security of software applications can be improved, reducing
both the risk and cost to the organization than if
vulnerabilities are found after the product has deployed.

2 | Learn more at NLIT!

Designing Security into Software
Systems using Threat Modeling

10:00 AM - 10:40 AM : Room 120A |

Cross-Site Request Forgery Gary Huang

Challenges and Solutions
10:45AM - | 1:25 AM : Room | |0B
Michael Coram
Choosing Static Application
Security Testing Tools
10:45 AM - 11:25 PM :Room 110B

Dr. Roger Hartley
Using Awareness and Training to Enable

Secure Software Development at Sandia
National Laboratories

10:00 AM - 10:40 AM : Room 120C
Angela Rivas

Benchmarking DevSecOps using |
Enterprise Search at Sandia
National Laboratories
9:15AM - 10:00 AM : Room 120A

Laritza Saenz

