
Secure Software Development
Practices at Sandia National
Laboratories

PRESENTED BY

Angela (Ang) Rivas and Michael Coram

ov mcoram@sandia.gov
OM*

Sandia National Laboratories is a rnultirnission
laboratory rnanaged and operated by National

Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

International lnc., for the U.S. Department of
Energy's National Nuclear Security Administration

under contract DE-NA0003S2S.

SAND2019-5102C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

3 Describing the Current State of Software Security

Ponemon Institute State of
Application Security Risk
Management (2016)
• Security pros view the application
layer as extremely vulnerable

• Lack of application security testing

• Only 14% do so throughout the
development life cycle

• 46% don't test at all

Figure 7. Where do security compromises most likely occur?
100 points allocated based on the level of nsk presented by each layer

35 -

30

25

20

15

10

32

5 1

Applications

25

17

12

1 g

• 5

•
Network Human

negligence
Data Physical Operating

systems

Building Security In Maturity
Model (BSI MM) (2017)

• 33% of firms use threat modeling
to identify potential attackers

• 62% of firms surveyed use internal
penetration testing tools on their
proj ects

• Only 6% of the firms customize
these tools to accommodate
changing environments or specific
needs

• 4% of respondents state their projects
use containers specifically to improve
their application security posture

• 4% of the organizations use
application behavior monitoring and
diagnostics

4 I Understanding Software Security at Sandia

Key Insights from Survey of the State of Software Security
Practices at Sandia National Laboratories

• Developers want an official source for information and

resources

• Developers want relevant training

• Some projects use security scanning tools, but do so

independently and with little or no guidance to evaluate

results

5 Formalizing Software Security at Sandia ■

Mission:
Secure software, from the start.

Vision:
We build highly adaptive, self-securing, cyber resilient software and data systems.

Establish a Software
Security Group

(SSG)

Enable a culture of
secure software
development

Provide enterprise
services.

Build a program to develop technologies and methods
to secure data and software from cyber-attacks

Establish and advance the Sandia strategy for data and software security

6 Reviewing Existing Software Development Lifecycles

Requirement

Analysis

System Design

ANALYSIS

Implementation

Testing

Waterfal l

DESIGN

CODING

Deployment

TESTING

IMPLEMENTATION

Iterative
https://existek.com/blog/sdlc-models/

DevOps

Requirements

Specifications

High Leve Design

Low Lever Design

Coding

Acceptance Testing

Systern Testing

Integration Testing

Unit Testing

V-Shaped

lJ
Test and Feedback

•.•

Requirements

Development

ti
Architecture and Design

/I/

Agile

https://www.alliedcode.com/software-devops/devops-graphic/

7 Redefining the Secure Software Development Lifecycle (SDLC)

11 Security BestPractices

Security User
Stories

Vulnerability
Management

4m

Pen
Testing

q f Build
di • Environment
wf-'# Hardening

Security
Configuration
Hardening

Threat
Modeling

1
Secure Design

1 Patterns

Security
Testing

Code
Analysis

Dependency
Management

8 Empower development teams to be software security
champions by offering awareness and technical training.

*Software Security
Awareness Training

*Developer Secure
Software

Development Lifecycle
(SDLC) Training and

Application

*Developer Technical
Training

*Developer Deep
Dive Dialogues

([W]e should be spending money on security training
for developers.These are people who can be taught
expertise in a fast-changing environment, and this is a
situation where raising the average behavior
increases the security of the overall system.

Bruce Schneierj

11 Security BestPractices

Security User
Stories

SSoef twc u r7tr:
Training

Build
• Environment

Hardening

9 Identify and account for software security risks and activities
through user stories and tasks. i

Think about how you will address security topics (CIA triad, authentication,
etc.).

Even if you aren't working in an agile environment, understand what the
bad guys might want to do (internal or external) and document it.

Security user stories, evil user stories, and abuser stories are all ways of
capturing malicious ways your system can be used (so you are aware and can
fix it).

•-%
As a user, l should only be able to see my
information and not other employees'

As a foreign adversary, l want to covertly '.\.L
and subtlety change how the system works
 J

 As a malicious insider, l want to steal classified

information to which l am unauthorized
EEE

11 Security BestPractices

Security User
Stories

Software.ighb.
Security
Training

4111-. Build
• Environment

Hardening

io Ensure that best practices for secure coding are available and
implemented in development projects.

Establish secure design best practices that can be applied to
any project.

Establish language and framework specific guidance for
security
O Memory management issues differ substantially between Java
and C/C++

O Mitigating CSRF will differ between Struts and Spring

Provide checklist templates for secure code reviews
O Encourage teams to augment based on their security risks and
level of experience

Develop template applications, examples, and reference
architectures
o Make it easy for developers to add security from the start

Make training materials publicly available and vet resources
for developers

Publish this information on a Secure Software Portal

Lead an awareness campaign (#SecureSoftware)

NMI

s '

0 Sandia •

National
Laboratorias

#SecureSoftware

7 SECURE SOFTWARE DEVELOPMENTTIPS
Tip #1 Secure by Design - 8uiid in

security from the start and define
security requirements. Don't
think you can graft it on at the end
of a project.

Tip frO ModelThreats - If you consider
threats, you can mitigate them.
Let us help you threat model.
Visit securesoftware.sandia.gov.

Tip 03 Practice Defense in Depth-
Provide redundancy so that a
security control failure's effects
are Limited.

Tip ay Adhere to the Principle of

Least Privilege- Duey program
and every user of the system
should operate using the least set
of privileges necessary to Lea
complete the job. se

Tip #5 Validate input - Validate input
from all untrusted data sources.
Use whitelisting or framework
rather than blacklisting. Validate
inputs both client side and server
side.

Tip #6 Manage Risk in Third-party

Components - Security flaws
exist in bot

m
h COTS and open

source coponents. Get
components from only trusted
sources and monitor them for
vulnerabilities

Tip #7 Keep it Simple - Keeping a
design as small and simple and
possible reduces the likelihood
that errors are made.

rn more:

curesoftware.sandia.gov

Jr Build
• Environment

Hardening

= Security Best
Practices

Security User
Stories

Software
.1 Security

Training

1

Harden development environments used to build and the test
the application.

Hardening is something that you have to do to prevent malicious injection
of code.

Restrict who can submit code and run builds.

Protect your test environments, especially if they include real data
o Use containers and VMs.

o Disable unnecessary accounts, software, services, and ports.

Maintain and backup logs (preferably with monitoring and alerts).

Encrypt data at rest and in motion.
infosecurity EVENTS INSIGHT

CIE
Brute-Force Attempts More bommon on Edge Devices

Webinars White Papers Events E. Conferences Directory

INFOSECURITY MAGAZINE NOME - OPINIONS"

Why and How You Should Harden Your Systems

Build
• Environment

Hardening

Security Best
Practices

Security User
Stories

Software.ighb.
Security
Training

12 Collaborate with development teams to perform threat
modeling on the system's architecture.

Diagram
Identify
Threats

Process
Th reats

• What are you • What can go • What are you
building? wrong? doing to

defend against
threats?

r

Validate

• Validate
previous steps

• Report

If we had our hands tied behind our backs (we don't) and could do only one thing to
improve software security—threat modeling, better security code reviews, or better
security testing—we would do threat modeling every day of the week.

Michael Howard and Steve Lipner

_}

1

13 I Provide a library of secure design patterns that can be utilized
by development teams to address or mitigate security
vulnerabilities and weaknesses.

Design patterns are a way of providing a general solution to a
security problem, offering one more way to improve software
security early on (in the design phase) where it's cheaper to fix,
rather than later in the lifecycle.

Patterns may be applied to architecture, design, or
development.

Cost per Defect*
$6,000

$5,000
$5,000

$4,000

$3,000

$2,000 $1,250

$1,000 $250 $500

$0
Requirements Design Coding and

Testing

Where Defect is Found

After Release

Capers Jones, A Short History of the Cost Per Defect Metric

14 1 Provide tools and assistance to development teams to help
them analyze the code and application to find vulnerabilities as
the software is developed.

Use Static Analysis Security Testing (SAST) tools

o Automatically finds potential defects, but resolution requires expertise

o Will not find all security vulnerabilities, so encourage additional analysis

o Likely to have many false positives, so help teams find the real issues

o Help developers integrate them into both developer tools (- TrIF ind

the build environment (e.g. Cl/CD)

Use Dynamic Analysis Security Testing (DAST) to(

o Scans running software, potentially finding issues SAST mit

o Allow developers to run ad hoc scans to identify defects ear]

o Integrate into the build environment

Perform manual security reviews

o Encourage teams to integrate into existing code review pr(

o Provide checklists to help teams perform reviews

o Assist in focused reviews of security significant componer

• ••

</>
Code

Analysis

Dependency
Management

1

1
15 Ensure teams are managing their dependencies and mitigating

vulnerabilities i

Open Source Software is a major risk

o 60% percent of enterprise codebases contain open-source vulnerabilities1

. 88% increase in application vulnerabilities between 2016 and 20182

. 78% of vulnerabilities are found in indirect dependencies2

. In the average application, over a third of the code base is open source3

Utilize Software Component Analysis (SCA) software
. Integrate into the build environment (Cl/CD) to detect issues prior to

deployment

o Ensure proper mitigation of security issues

o Continually check software for new vulnerabilities

Create a curated repository of trusted software
. Do not let vulnerable software into your environment

o Developers and build tools download libraries from the trusted
repository rather than the Internet

. Make sure to keep the repository updated!

[I] https://www.zdnet.com/article/60-percent-of-codebases-contain-open-source-vulnerabilities/
[2] https://snyk.io/opensourcesecurity-20 I 9/
[3] https://www.csoonline.com/article/3 I 57377/open-source-software-security-challenges-persist.html

Code
Analysis

Dependency
Management

eiee

1
16 Develop and execute security tests specific to the application,

such as access control tests I

Test early and often — even though it's a phase
of the secure SDLC, testing should be
integrated throughout the lifecycle

Includes functional, non-functional, and
regression

Think with an adversarial or "let's break it"
mindset

Use the right tools — especially to automate!

Remember those use and abuse cases? Test
them!

Security testing can help you find areas for
improvement — so that in addition to being
more secure, you can also be more efficient!

1
.

17 Help teams configure their deployment environments to be
hardened against attacks.

VuLnerability
Management

Pen
Testing

Use Defense in Depth
o Do not rely on a single defense

Keep up with security patches
o Patch Tuesday can lead to Exploit Wednesday

Control who has administrative permissions
o Consider the entire stack — container, virtual machine, host machine
o Use Principle of Least Privilege

Reduce the attack surface
o Use firewalls, including Web Application Firewalls
o Turn off unnecessary services

ConSfeigcuurriattyion
Hardening

Insecure deployment environments can make
the most secure software vulnerable

18 Perform independent penetration testing as a final validation
that security issues have been resolved.

VuLnerability
Management

Pen
1"esting

For security significant and high risk applications, penetration
testing by skilled individuals can help validate
O Recommend that a specialized team, independent of the Secure Software
Group, perform this activity

Consider "light red teaming' for applications with lower risk
o Utilize the Secure Software Group to grow their skills, encourage an
adversarial mindset, and validate work performed in prior steps

Following this Secure Software Development lifecycle
minimizes the chance the pen testing will find an issue
o A final check, performed as an attacker, can provide validation and
reassurance

ConSfeigcuurriattyion
Hardening

Go ahead, wait for me to find the
vulnerabilities. Pen testing is too hard.

19 Encourage teams to manage vulnerabilities throughout the
application's lifetime

Vutnerability
Management

Pen
Testing

Need to continue to monitor for vulnerabilities and address them

o New vulnerabilities in Open Source Software can be reported

• Users can find security significant bugs

o Attackers can find issues that were missed

Bug fixes and new features will be needed
• Consider risk of introducing security vulnerabilities, especially for emergency
fixes

• Repeat the security software lifecycle where possible, abbreviating where
appropriate based on risk

Monitor logs
o If a zero-day exists, logs may be the only evidence

• T__,00k for abnormal behavior — intrusion detection

ConSfeigcuurriattyion

Hardening

Just because you deployed, does not mean
you are done with security

1
20 Collect data throughout the process, analyze it, and correlate

with opportunities for improvement. i

Continually improve your secure development practices
O Perform root cause analysis to determine how a vulnerability was introduced

a Consider how the issue could have been found earlier or avoided completely

O Focus on making the process easier for developers to follow

O Automate and optimize where possible

Share lessons learned across teams
O Capture new security best practices
O Identify common causes of vulnerabilities and methods to address

O Share tips and tricks for using security tools

Identify areas for future research
O Keep current on new tools, techniques, and threats
O Develop your own tools or extend existing ones to better meet yc

O Drive the state-of-the-art forward

Your adversaries will not rest,
so neither should you

iorrela)rtion
Et Analytics

21 I Summary

We are leading change by moving security earlier in the
development process and providing a comprehensive approach
that integrates and automates security through the
development lifecycle.

By following these steps, regardless of the programming
methodology or framework being used, SNL believes that the
security of software applications can be improved, reducing
both the risk and cost to the organization than if
vulnerabilities are found after the product has deployed.

22 Learn more at NLIT!

Cross-Site Request Forgery
Challenges and Solutions
10:45 AM - 1 1 :25 AM : Room 110B
Michael Coram

Using Awareness and Training to Enable
Secure Software Development at Sandia
National Laboratories
10:00 AM - 10:40 AM : Room 120C
Angela Rivas

Designing Security into Software
Systems using Threat Modeling
10:00 AM - 10:40 AM : Room 120A

Gary Huang

Choosing Static Application
Security Testing Tools

10:45 AM - 11:25 PM : Room 110B
Dr. Roger Hartley

Benchmarking DevSecOps using
Enterprise Search at Sandia

National Laboratories
9:15 AM - 10:00 AM : Room 120A

Laritza Saenz

