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2 I PEM Fuel Cells

Materials
• PEM (proton exchange

membrane) conducts
H+ ions.

• Electrode contains
catalyst particles and
ion-conducting polymer.

Limitations
• Conduction typically

requires water and
temperatures <100 °C.

• Platinum or other precious
metal catalyst is required.
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Desired Improvements
• Reduce catalyst loading
• Simplify water management (humidity controls)
• Simplify temperature control (radiator)
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Figure from fuelcellstore.com (modified)



I3 High Temperature PEM Fuel Cells

Objective
Development of PEM fuel cells that can operate at temperatures
between 200-300 °C.

Advantages of this technology
• Higher catalytic activity at

higher temperatures (less
catalyst needed).

• Easier thermal management
(smaller radiators).

• No water needed (elimination
of humidifiers).

• All of these lead to lower fuel
cell costs.

Challenges
• Need durable membranes and

ionomers that conduct protons
without water.

Further cost reduction of fuel cells
r
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o Humidifiers
o Large radiators
o Reactant quality

control
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High temperature and low RH fuel cell
operation could enable fixed cost
savings of $7.5/kWnet by eliminating or
reducing the size of BOP components
such as humidifier and radiator.

N. Dale, Nissan Motors



4 I Background: Poly(phenylene)-based PEMs

Previous PEM fuel cell membrane from Sandia based on Diels-Alder polymerization
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Highlight: Very stable hydrocarbon PEM but proton conductivity is strongly
dependent on water content.

Stanis, R. J.; Yaklin, M. A.; Cornelius, C. J.; Takatera, T.; Umemoto, A.; Ambrosini, A.;
Fujimoto, C. H. J. Power Sources 2010, 195, 104.



I5 Background:Anion Exchange Membranes

AEM stability test: Immerse AEMs in 0.5 M (solid) or 4 M (dashed) NaOH at 80°C.
Conductivity measured at 30°C/95% RH during the stability test.
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Highlight: No conductivity or structural changes for TMAC6PP after 4 M NaOH
treatment at 80°C for 2,200 h. Among the most stable alkaline AEMs reported.



I6 lon-Pair Membranes

Previous high temperature fuel cell membrane
with "shared" proton-type interaction1

On,
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PA-PBI 
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c
Acid-base interaction energy calculated for small l
molecule model = 17.4 kcal/mol

Impact of strong ion-pair interaction:
• Better performance at low

temperature/high RH because
biphosphate doesn't leach out

LANL/SNL-developed high temperature fuel
cell membrane with purely ionic interaction
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lon-pair interaction energy)
calculated for small
molecule model = 152
kcal/mol

• Better performance at high temperatures because biphosphate
doesn't evaporate

1Xiao, L.X.; Zhang, H.F. Scanlon, E. Ramanathan, L.S.; Choe, E.W. Rogers, D. Apple,• Los Alamos T. Benicewicz, B.C. Chem. Mater. 2005, 17, 5328.NATIONAL LABORA



I7 Interaction Measurement (3lP NM R)
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• 31 P NMR shows a single peak, indicating exchanging electrons in the phosphate phase.

• lon pair coordinated system has higher interaction energy - consistent with DFT study.

• Interaction energy HMG > TBA > TMA » guanidine > benzimidazole > pyridine

0 Los Alamos
NATIONAL LABORA



$1 Water Tolerance

Water vapor pressure, PH20 (kPa)
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Chemical structure of ion-pair coordinated membrane
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• PA-ADAPP ion pair membrane shows significant improvement in
conductivity throughout RH test range but PA can leach out at RH > 50%.

• DAPP membrane reformulated with alternative ion pairs shows constant

___—.) conductivity at all RH values.
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I9 PA-ADAPP High Temperature Fuel Cell Performance

Membrane: PA-ADAPP
lonomer: PA-ADAPP

Membrane: PA-ADAPP
lonomer: PPFS

Measured in H2/02, 147 kPa abs
backpressure; Pt-Ru/C 0.75
mgpt/cm2 for anode and Pt/C 0.6
mg/cm2 for cathode
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phosphate can't
evaporate or leach out
of electrodes.



10 New lonomers with Covalently Bonded Phosphonic
Acid Groups

General structure of
proposed ionomers

HO-P-OH

0

Target characteristics 
• Fl+ conductivity > 100 mS/cm from 200-300 °C
• IEC between 1.5-3 meq/g
• Mw between 20-200K (low Mw to improve solubility)
• Solubility: 2-5 wt% in DMAc or DMSO
• Stability: <5% performance loss over 1000 hours
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Features 
• Diels-Alder polymerization forms poly(phenylene) without a catalyst and parent

polymers are soluble in low-polarity organic solvents.
• Acid groups can't evaporate or leach out.
• Good interfacial compatibility with polyaromatic based ion-pair coordinated

membrane.
• DOE-owned intellectual property



11 Synthesis: Pentafluoro DAPP

Previously published
phosphonation method1
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Me3SiO,
JD-OSiMe3

Me3SiO Product is
insoluble

• Hnospnonation of pentanuorophenyl groups on polystyrene nas been reported.1
• Attempts to add trimethylsilylphosphite to pentafluorophenyl groups on DAPP

have all led to insoluble products due to crosslinking or over-phosphonation.

••••

1Atanasov, V.; Kerres, J. Macromolecules 2011, 44, 6416.



12 Synthesis: Possible Crosslinking Mechanism
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• The substitution reaction with triethylphosphite can lead to crosslinking. 1
• BrTMPP can crosslink at elevated temperatures.
• Try to accomplish phosphonation under mild conditions to avoid crosslinking.

1Cabasso, I.; Jagur-Grodzinski, J.; Vofsi, D. J. Appl. Polym. Sci. 1974, 18, 1969.



13 Synthesis: Low Temperature Phosphonation

(Et0)3P

(Et0)3P

100% conversion

NBS/benzoyl peroxide

m

(Et0) P

1.2 P(OEt)3 per Br
0.2 eq ZnBr2 per Br
  -4 

25 °C

m

1.2 P(OEt)3 per Br
0.2 eq ZnBr2 per Br

m

25-40% conversion

• Low temperature phosphonation was successful but conversion was low.
• Complete conversion required many repeat steps.

1 Rajeshwareri, G.G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A.K. Org. Letters 2011, 13, 1270.



1 Synthesis: Michaelis Arbuzov High Temperature
14 Phosphonation

(Et0) P
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•  temperature reaction gives complete conversion with no evidence of
crosslinking. The product is soluble in polar aprotic solvents.

• The deprotected product is ready to be tested as an ionomer.



15 Future Work

• Scale up synthesis of PC1PP ionomer.
• Synthesis of PC6PP and/or DAPP with pendant pentafluorophenyl groups.
• Measure membrane ASR in MEA with new ionomers.
• Measure catalytic activity with new ionomers.
• Optimize electrode structure using down-selected catalysts and

ionomers.
• Low PGM fuel cell durability testing at 200 °C.
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