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Direct Numerical Simulation — S3D

* DNS of turbulent reacting flows

» Solves compressible reacting
Navier-Stokes, total energy and
species continuity equations

* High-order finite-difference
methods

 Detailed reaction kinetics and
molecular transport models

- Lagrangian particle tracking
(tracers, spray, soot)

- In situ analytics and visualization DNS provides unique fundamental
insight into the chemistry-
« Refactored for multi-threaded, turbulence interaction

many core heterogeneous
architectures

Chen et al., Comp. Sci. Disc., 2009



DNS of a Turbulent Autoigniting n-Dodecane
temporal jet at 25 Bar
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2University of Connecticut

Ketohydroperoxide mass fraction

Borghesi et al. Combustion and Flame, 2018



Background and Objective

Low-temperature combustion
(LTC) aims at increasing fuel
efficiency and reducing emissions

Under LTC conditions, combustion
occurs in a mixed mode and in
multiple ignition stages

Ignition is now very sensitive to
the fuel chemistry, especially to
the low temperature reactions
branch
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Question: How does transport and low-temperature chemistry affect
ignition in low-temperature diesel combustion?



Low Temperature Diesel Combustion
Experiments — Engine Combustion Network
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DNS Configuration and Physical Parameters

&y)  Uly)

Pressure: 25 bar Nomreflecting outfiow v,
Air stream: 21% X,,+79% Xy,, T=960 K X oxuo:°.-.°}:°
Fuel stream: n-dodecane at §=0.3, T=450 K ] e A Her | .._.._..ﬂ..,_._.._

> = .:....... ........:...:.

Kinetics: 35-species non-stiff reduced (Lu)
Fuel jet velocity: 21 m/s, Re; = 7000, Re, ~ 950 el ek

L= 12xH,;
Code and cost: S3D Legion, 60M CPUh

.. ..... oY @ov ..... o ©].

Periodic x,
Periodic x,

Setup:
— 3 billion grids
— 3 microns spatial grid resolution
— Dimensions: 3.6 mm x 14.0 mm x 3.0 mm

— 1 ms of physical time with 4 ns timesteps
to observe ignition and propagation of
burning flames throughout the domain

Figure: H,O, mass fraction at

— BCs: X and Z periodic, Y NSCBC outflows t=0.17 ms after start of
reactions



Homogeneous Multi-Stage Autoignition
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Dynamics of 2-Stage Ndodecane Ignition in a
Jet at Diesel Conditions

Rendering by Chris Ye, Min Shih, Franz Sauer, and Kwan-Liu Ma

Ketohydroperoxide and T,K (>1150K) H,0, mass fraction




Ketohydroperoxide during low-T ignition




Conditional means Ket, H,0,, and Temperature
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Fig. 2: Conditional mean ketohydroperoxide mass fraction (left image ), hydrogen peroxide mass fraction (center image) and
temperature (right image ), conditioned on mixture fraction (fuclfair ratio) at slected times during low- and high- mperature
astoignition of n-dodecane. The stoichiometric mixture fraction is at 0.0M6. A high-emporature flame is ostablished by t =
0.56 ms High-temperatume ignition occurs first at a mixture fraction of (L16 at 0.34 ms which is shorter than the cormesponding
homogencous ignition de lay.



Turbulent versus homogeneous ignition
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Low-T and high-T ignition in jet can be faster and than in a PSR !



x-H202 cross-correlation [-]
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Effect of Scalar Dissipation Rate on Low
Temperature Ignition
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Conclusions

Low-temperature reactions create the conditions for high-temperature
ignition to occur faster than under homogeneous conditions;

Low-temperature front appears to propagate through a diffusively
supported cool flame;

High scalar dissipation appears to delay low-temperature ignition;
however, it leads to faster ignition at very rich mixture conditions;

High-T ignition starts at conditions richer-than-homogeneous conditions
(€=0.16 compared to £=0.12). Edge flames are seen to form around &.
High-T flame ignites mainly by propagation of rich premixed flames
following hot ignition to &.



Parallel Programming 101 - Productivity

Functionally correct Mapping to target
application code machine

Extraction of para B
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Parallel Programming 101

Functionally correct Mapping to target
application code machine

‘ Compiler/Runtime |
Extraction of parallelism ,_J understanding of __E

data
a\Na
Task scheduling [\ Data-Dependent

Latency hiding Behavior

Management of
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Legion Programming System applied to S3D

» A data-centric parallel programming system

» A programming model for heterogeneous, distributed machines

— Automates many aspects of achieving high performance, such as extracting task- and
data-level parallelism

— Automates details of scheduling tasks and data movement (performance optimization)

— Separates the specification of tasks and data from the mapping onto a machine
(performance portability)

. . . o r ; r !
* Legion application example: S3D '
— Production combustion simulation RO & a& = oo T
P , 5 Ry
— Wiritten in ~200K lines of Fortran € oo <><':~><><>
. . . : . C . B ;
— Direct numerical simulation using explicit 2 s} 3X 00_
methods s 1 B
£ 20000 oo ST SRS JNULIS S P N1 S

. . X
I a2 ) |
e 10919 ¢ Legion S3D Vvvv o
{ ¥ ¥ MPI Fortran S3D |: | Yvv |

. 1I lli 1|6 6I4 256 10|24 AGbG 13!I!24

S3D performanth:Oéjﬁfegion vs. MPI

S. Treichler et al., “S3D-Legion: An Exascale Software for Direct Numerical

Simulation (DNS) of Turbulent Combustion with Complex Multicomponent

Chemistry,” CRC Book on Exascale Scientific Applications: Programming =\
Approaches for Scalability Performance and Portability, 2017. [ )P Eé@%&iﬁs
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S3D-Legion Task Graph on a Summit node with n-
dodecane chemistry (35 species)
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Fig 3: The task graph for a single time stop on one node of SID-Legion simulating n-dodecane.
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Weak and Strong Scaling Performance of S3D-Legion on

Summit and PizDaint at ETH
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Execution Overhead of In-situ Analytics
(CEMA) in S3D-Legion (Titan & Piz Daint)
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Legion S3D Lessons Learned

* Legion
— 83D shows potential of data-centric, task-based models
— Enables new simulation capabilities (physics, and in situ analytics)

— Code is easier to modify and maintain
* Ports are just new mappings, easy to tune for performance
* New functionality usually just means new tasks
* Legion will figure out the dependences and scheduling
* Productivity requires higher level abstraction layer for scientists to write in

« Co-Design and ECP
— The Legion/S3D experience is a tribute to co-design
— Computer and computational scientists worked closely
— Major progress on important problems resulted
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