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Direct Numerical Simulation

• DNS of turbulent reacting flows

• Solves compressible reacting
Navier-Stokes, total energy and
species continuity equations

• High-order finite-difference
methods

• Detailed reaction kinetics and
molecular transport models

• Lagrangian particle tracking
(tracers, spray, soot)

• In situ analytics and visualization

• Refactored for multi-threaded,
many core heterogeneous
architectures

S3D

DNS provides unique fundamental
insight into the chemistry-
turbulence interaction

Chen et al., Comp. Sci. Disc., 2009
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Background and Objective

• Low-temperature combustion
(LTC) aims at increasing fuel 2250

efficiency and reducing emissions
—1850

• Under LTC conditions, combustion
co

occurs in a mixed mode and in t 1450

multiple ignition stages
- 1050

• Ignition is now very sensitive to
the fuel chemistry, especially to
the low temperature reactions
branch
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Question: How does transport and low-temperature chemistry affect
ignition in low-temperature diesel combustion?



Low Temperature Diesel Combustion
Experiments - Engine Combustion Network
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DNS Configuration and Physical Parameters
• Pressure: 25 bar

• Air stream: 21% X02+79% XN2, T=960 K

• Fuel stream: n-dodecane at •=0.3, T=450 K

• Kinetics: 35-species non-stiff reduced (Lu)

• Fuel jet velocity: 21 m/s, Rei = 7000, Ret — 950

• Code and cost: S3D Legion, 60M CPUh

• Setup:

— 3 billion grids

— 3 microns spatial grid resolution

— Dimensions: 3.6 mm x 14.0 mm x 3.0 mm

— 1 ms of physical time with 4 ns timesteps

to observe ignition and propagation of

burning flames throughout the domain

— BCs: X and Z periodic, Y NSCBC outflows
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Figure: H202 mass fraction at
t=0.17 ms after start of
reactions
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Homogeneous Multi-Stage Autoignition
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Dynamics of 2-Stage Ndodecane Ignition in a
Jet at Diesel Conditions

Rendering by Chris Ye, Min Shih, Franz Sauer, and Kwan-Liu Ma

Ketohydroperoxide and T,K (>1150K) H202 mass fraction



Ketohydroperoxide during low-T ignition



Conditional means Ket, H202, and Temperature
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Turbulent versus homogeneous ignition
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Low-T and high-T ignition in jet can be faster and than in a PSR !
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Conclusions

• Low-temperature reactions create the conditions for high-temperature
ignition to occur faster than under homogeneous conditions;

• Low-temperature front appears to propagate through a diffusively
supported cool flame;

• High scalar dissipation appears to delay low-temperature ignition;
however, it leads to faster ignition at very rich mixture conditions;

• High-T ignition starts at conditions richer-than-homogeneous conditions
(4=0.16 compared to 4=0.12). Edge flames are seen to form around 4st.
High-T flame ignites mainly by propagation of rich premixed flames
following hot ignition to 4st.
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Parallel Programming 101

Functionally correct
application code

Extraction of parallelism

Task scheduling
Latency hiding
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Legion Programming System applied to S3D
• A data-centric parallel programming system

• A programming model for heterogeneous, distributed machines

- Automates many aspects of achieving high performance, such as extracting task- and
data-level parallelism

- Automates details of scheduling tasks and data movement (performance optimization)

- Separates the specification of tasks and data from the mapping onto a machine
(performance portability) 6000c

• Legion application example: S3D

- Production combustion simulation 
A000

5
- Written in -200K lines of Fortran a_ 0000

- Direct numerical simulation using explicit 10000
methods
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S3D-Legion Task Graph on a Summit node with n-
dodecane chemistry (35 species)
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Weak and Strong Scaling Performance of S3D-Legion on
Summit and PizDaint at ETH
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Execution Overhead of In-situ Analytics
(CEMA) in S3D-Legion (Titan & Piz Daint)
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Legion S3D Lessons Learned

• Legion
— S3D shows potential of data-centric, task-based models

— Enables new simulation capabilities (physics, and in situ analytics)

— Code is easier to modify and maintain
• Ports are just new mappings, easy to tune for performance

• New functionality usually just means new tasks

• Legion will figure out the dependences and scheduling

• Productivity requires higher level abstraction layer for scientists to write in

• Co-Design and ECP
— The Legion/S3D experience is a tribute to co-design

— Computer and computational scientists worked closely

— Major progress on important problems resulted

21 Exascale Computing Project
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