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Problem context i)

= Combustion simulation data are multi-scale, multi-variate.

= Tensors are a very powerful abstraction; Tensor decomposition offer a
rich set of analyses.

= Higher order tensors are usually large and expensive to
compute/store.

= Tensor algebra can (often is) posed as “multi-linear algebra”.

= GPU acceleration, leveraging well-established linear algebra kernels,
can provide great speedups.




Outline i) atonat

= Tensor-based analysis.
= Algorithm outline.

= Computational Challenge.

= GPU acceleration.
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= Tensor-based analysis: anomalous event detection.




Hypothesis and proposed solution ) i,

= |Information of anomalous events present in higher order statistical
moments, e.g. kurtosis.

= For multi-variate non-Gaussian fields, joint moments (co-kurtosis) need
to be analysed.

= |dentify principal vectors of kurtosis (analogous to PCs in PCA) in the
variable (a.k.a feature) space.

=  Anomalies manifest as principal kurtosis vectors (PKVs) that are
“distinct”.
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Principal Component Analysis (PCA) Revisit @&,

= Eigen-decomposition of co-variance matrix. 1
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= Principal Components represent directions of variance in the data.
= By analogy, we seek vectors that represent the higher moments:

= extend concept of PCA to higher joint moment (co-kurtosis) tensors.

= becomes a symmetric tensor decomposition problem.




Symmetric Tensor Decomposition: Choices

= (Canonical Polyadic (CP) decomp:
= Sum of outer products of vectors.
= What rank, r (Comon et al. 2008)?

= Not orthogonal in general.

= Higher Order SVD (HOSVD, Lathauwer et al. 2000)2

= Symmetric tensor is a special case

= Factor matrices (A) are orthogonal.
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= Tensor Eigenpairs (Lim 2005, Qi 2005, Kolda & Mayo 2011) :
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Outline i) ot

= Algorithm outline: Extract, Compare PKVs.
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Simple Moment-Tensor Decomposition ) i,

Motivated by connections to Independent Component Analysis (ICA).

Operate on fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010,

Anandkumar et al. 2014)
" M, =Ex @ x® x ® x] - E[x;;x;] E[x;3x;4] - E[x;1%33] E[x;5%;4] - E[x;104] E[x;x:5]

A simple way to decompose M, : matricize and SVD (Anandkumar et al. 2014):

" mat(M,) =M= %, ks a; ® vec(a;® 0, ® a;)
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Putting It Together: HCCI Data Set ) i,

= Extract Principal Kurtosis Vectors (PKVs) on each MPI rank.

= Transform PKVs to a “moment (kurtosis) metric per feature (variable)”.
= Moment metrics quantify contribution of a feature to overall kurtosis.

= Normalized (between 0-1), and also sum to 1 (like a discrete distribution).

= Compare moment metrics across MPI ranks (Hellinger distance).

feature X has a higher metric (close to 1)
than feature Y (close to 0).
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Outline i) e

Computational Challenge: Moment Tensors are expensive.




Computational Considerations i) fe
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= Revisiting the fourth moment (cumulant) tensor:
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= Co-kurtosis tensor is large ( O(nvars?) ).

= Very expensive to compute.

do L = 1, nvars
do K = 1, nvars
do J = 1, nvars
do I = 1, nvars
do N = 1,nx*ny*nz




Solution: Refactored Lin-Alg Kernels ars_, @ e
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Typical layout of data matrix, Xz igs x nvars)

grid points
memory layout

v \ ./
= Key insight: M, can be expressed as sequence of operations on X7

= §S=XTOXT; ® - Khatri-Rao product

= mat(M,) =8 ST; matrix-matrix multiplication

=  Any moment tensor can be expressed as such sequence; in the limit covariance
C=XTX

= This refactoring saves both memory and compute.




Khatri-Rao product ) ..

" Preliminary: Kronecker product A ® B

A1 0 Qin
: ) ; A XB:=

Am1  *°° Amn

a11B e alnB

amB - a,,B
=  Khatri-Rao product = column-wise Kronecker product

S A 5 F7)

allbl alnbn
) B = [b1 bn], A ©®OB = : oy :

Amib1 -+ Amnbn
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= GPU acceleration: Handwritten + cuBLAS kernel




GPU-fication of Key Lin-Alg Kernels )

= S = X' ©®XT; Khatri-Rao product hand-optimised:

A OB =

aj1by o ainby
= Coarse-grain parallelism. ' ' '

amlbl T amnbn

= Thread parallelism + memory coalescence.
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GPU-fication of Key Lin-Alg Kernels ) i
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= S = X' ©®XT; Khatri-Rao product hand-optimised:

AGOB = TB(1,1)
= Coarse-grain parallelism: 2D Thread Block grid OB =
= Thread parallelism + memory coalescence.
. ralllr } a12|r ]| alk{ ]l N - Threads operate on contiguous rows
Thread — |b1| |b2| ______ Ibkl * Reads (b;) are contiguous vectors.

alignment | | ] | | | | « Writes are also contiguous row elems.

S L) L)/ . Threads in a block operate one column

at a time.

= mat(M,) =8 S8T; cublasDgemm.




GPU-Speedup ) .

= Tests for the 2D-HCCI data set:

= 56 x 56 grid points per block (MPI rank), 28 species.

= Comparisons of refactored + GPU-fied kernel vs naive Fortran.

= Time includes the cost of a one-time data transpose, and host-GPU copies.
"= Runs on Rhea @OLCF:

= |ntel® Xeon® E5-2695 (14 cores) + K80 GPUs.

= cuda/10.0.130.

= CPU version (naive Fortran), 9.5s; GPU version, 0.3s, 30x speedup.
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Summary ) faons,

For anomaly detection in scientific data, statistical models based on higher
moments may be promising.

Use of “principal vectors of Kurtosis” as indicators of anomalous events.

Metrics quantify change in the principal kurtosis vectors and identify anomalous
subdomains.

Construction of PKVs as a symmetric tensor decomposition problem.

Refactored linear algebra kernels for tensor formation ported effectively to
GPUs, with ~30x speedups.
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= |dentifies non-Gaussian independent random variables that are lifiéa ...
mixed:

" X :=As+ n. (x-observed vector;s-independent sources, n-Gaussian i.i.d noise)




= |dentifies non-Gaussian independent random variables that are liféd ..
mixed:

" X :=As+ n. (x-observed vector;s-independent sources, n-Gaussian i.i.d noise)

= Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon &
Jutten 2010, Anandkumar et al. 2014)

= M, =E[x @ x® x ® x]- E[x;;x;,] E[x;3%;4] - E[x;12;3] E[x;p%,4] - E[x1%14] E[x5%45]

= M,= ) ks a4 ® 0, a;® a (ks -excess Kurtosis of i*" source; a; — columns of A)




Independent Component Analysis (ICA) i) e,

= |dentifies non-Gaussian independent random variables that are linearly
mixed:

"= X :=As+ n. (x-observed vector;s-independent sources, n-Gaussian i.i.d noise)

= Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon &
Jutten 2010, Anandkumar et al. 2014)

= M, =E[x ® x® x ® x] - E[x;1x;,] E[x;3%;4] - E[x31233] E[x15234] - E[ x5, %3] E[x35%;5]

= M,= ) Ks 4, ® 0;® a;® a, (ks -excess Kurtosis of i*h source; a; - columns of A)
= Asimpler way to decompose M, : matricize and SVD (Anandkumar et al. 2014):

" mat(My,) =M= 3,; ks a; ® vec(a;® 0, ® a;)

= Caveats: repeated or close eigenvalues.




Simple 1D configuration with initial temperature inhomogeneit@| Sondic
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Evolution of Kurtosis vectors.
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Defined per processor, aggregated over R i [FIM; p, () — FIME; (A12Y) e,
all features b
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