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Problem context 

■ Combustion simulation data are multi-scale, multi-variate.

■ Tensors are a very powerful abstraction; Tensor decomposition offer a
rich set of analyses.

■ Higher order tensors are usually large and expensive to
compute/store.

■ Tensor algebra can (often is) posed as "multi-linear algebra".

■ GPU acceleration, leveraging well-established linear algebra kernels,
can provide great speedups.
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Outline

■ Tensor-based analysis.

■ Algorithm outline.

■ Computational Challenge.

■ GPU acceleration.
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Outline 

■ Tensor-based analysis: anomalous event detection.

■ Algorithm outline.

■ Computational Challenge.

■ GPU acceleration.
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Hypothesis and proposed solution

■ Information of anomalous events present in higher order statistical
moments, e.g. kurtosis.
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■ For multi-variate non-Gaussian fields, joint moments (co-kurtosis) need
to be analysed.

■ Identify principal vectors of kurtosis (analogous to PCs in PCA) in the
variable (a.k.a feature) space.

■ Anomalies manifest as principal kurtosis vectors (PKVs) that are
"distinct".
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■ For multi-variate non-Gaussian fields, joint moments (co-kurtosis) need
to be analysed.

■ Identify principal vectors of kurtosis  (analogous to PCs in PCA) in the
variable (a.k.a feature) space.

■ Anomalies manifest as principal kurtosis vectors (PKVs) that are
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Principal Component Analysis (PCA) Revisit

• Eigen-decomposition of co-variance matrix.

• C=QAQT
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https://commons.wikimedia.org/w/index.php?curid=46871195

• Principal Components represent directions of variance in the data.

• By analogy, we seek vectors that represent the higher moments:

• extend concept of PCA to higher joint moment (co-kurtosis) tensors.

• becomes a symmetric tensor decomposition problem.
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Symmetric Tensor Decomposition: Choices 
qi

• Canonical Polyadic (CP) decomp:

• Sum of outer products of vectors.

• What rank, r (Comon et al. 2008)?

• Not orthogonal in general.

N Higher Order SVD (HOSVD, Lathauwer et al. 2000):

• Symmetric tensor is a special case

• Factor matrices (A) are orthogonal.

N Tensor Eigenpairs (Lim 2005, Qi 2005, Kolda & Mayo 2011) :

• TXIT1-1 = Ax

(Nx1)

A
(NbA)

Ai.

. . .

A
(NxN)
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Outline

■ Tensor-based analysis.

■ Algorithm outline: Extract, Compare PKVs.

■ Computational Challenge.

■ GPU acceleration.
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Simple Moment-Tensor Decomposition 11111111
 Sandia
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• Motivated by connections to Independent Component Analysis (ICA).

• Operate on fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010,
Anandkumar et al. 2014)

• m4:= E[x x® x x]- lE[xdx,2] E[xi3x,4] - IE[xilx,3] IE[x,2x14] - IE[xilx,4] lE[x,2x,3]

• A simple way to decompose M4 : matricize and SVD (Anandkumar et al. 2014):

• mat(M4) = M= Ei Ks ai vec(a10 ai0 ai)
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Simple Moment-Tensor Decomposition 

• Motivated by connections to Independent Component Analysis (ICA).

• Operate on fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010,
Anandkumar et al. 2014)

• m4:= E[x x® x x]
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- lE[xax,2] E[xi3x,4] - IE[xdx,3] IE[x,2x14] - IE[xilx,4] lE[x,2x,3]

• A simple way to decompose M4 : matricize and SVD (Anandkumar et al. 2014):

• mat(M4) = M=

PCA vecs

Kurtosis vecs°
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Putting It Together: HCCI Data Set 

• Extract Principal Kurtosis Vectors (PKVs) on each MPI rank.

• Transform PKVs to a "moment (kurtosis) metric per feature (variable)".

• Moment metrics quantify contribution of a feature to overall kurtosis.

• Normalized (between 0-1), and also sum to 1 (like a discrete distribution).

• Compare moment metrics across MPI ranks (Hellinger distance).

1

0

o 1
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feature X has a higher metric (close to 1)
than feature Y (close to 0).
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Putting It Together: HCCI Data Set 

• Extract Principal Kurtosis Vectors (PKVs) on each MPI rank.

• Transform PKVs to a "moment (kurtosis) metric per feature (variable)".

• Moment metrics quantify contribution of a feature to overall kurtosis.

• Normalized (between 0-1), and also sum to 1 (like a discrete distribution).
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Outline 

■ Tensor-based analysis.

■ Algorithm outline.

■ Computational Challenge: Moment Tensors are expensive.

■ GPU acceleration.
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Computational Considerations 

• Revisiting the fourth moment (cumulant) tensor:

• .~4 • ..1,E [x 0 x 0 x 0 2cji- IE [xitxj2] IE ki3xi4] - IE kilxi3] IE [xi2xj4] - IE kaxi4] IE ki2xj3]

• Co-kurtosis tensor is large ( 0(nvars4) ).

• Very expensive to compute.
do L = 1, nvars

do K = 1, nvars
do 3 = 1, nvars

do I = 1, nvars
do N = 1,nx*ny*nz

enddo
enddo

enddo
enddo

enddo
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Solution: Refactored Lin-Alg Kernels

Typical layout of data matrix, X(ngrids x nvars)

.

va rs
 .

c"

.}
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• Key insight: M4 can be expressed as sequence of operations on XT

. s = XT 0 XT ; 
0 - Khatri-Rao product

• mat(PC4) = S ST; matrix-matrix multiplication

• Any moment tensor can be expressed as such sequence; in the limit covariance

C = XTX

• This refactoring saves both memory and compute.
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Khatri-Rao product

• Preliminary: Kronecker product A 0 B

A :=
[ an • • •

aln

am i 
• • •

amn

A 0 B :=
[a11B

amiB

• Khatri-Rao product = column-wise Kronecker product

A :=
.

am i

• • •

.
.
•

• • •

al

amn

., B := [b1 ••• . bn]; A (DB :=

• • •

• • •

alnB
:.

amnB
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Outline

• Tensor-based analysis.

• Algorithm outline.

• Computational Chnilenge.

• GPU acceleration: Handwritten + cuBLAS kernel
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GPU-fication of Key Lin-Alg Kernels

• S = XT C)XT; Khatri-Rao product hand-optimised:

• Coarse-grain parallelism.

• Thread parallelism + memory coalescence.

A OB :=
[ an b1

Lamibi

• • •

• • •
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GPU-fication of Key Lin-Alg Kernels

• S = XT C)XT; Khatri-Rao product hand-optimised:

• Coarse-grain parallelism: 2D Thread Block grid

• Thread parallelism + memory coalescence.

A OB :=
TB(1,1)

kil-B(p,1)
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TB(p,q)
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GPU-fication of Key Lin-Alg Kernels

• S = XT C) XT ; Khatri-Rao product hand-optimised:

• Coarse-grain parallelism: 2D Thread Block grid

• Thread parallelism + memory coalescence.

Thread
alignment

r i I 1 I 
1 )

an a12 alkl l

1b11 1b21 l bk l

1 1 1 1 1 1
L J l J J

• mat(M4) = S ST ; cublasDgemm .

A OB :=
TB(1,1)

TB(p,1)
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TB(p,q)

• Threads operate on contiguous rows

• Reads (bi) are contiguous vectors.

• Writes are also contiguous row elems.

• Threads in a block operate one column
at a time.
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GPU-Speedup Sandia
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• Tests for the 2D-HCCI data set:

• 56 x 56 grid points per block (MPI rank), 28 species.

• Comparisons of refactored + GPU-fied kernel vs naïve Fortran.

• Time includes the cost of a one-time data transpose, and host-GPU copies.

• Runs on Rhea @OLCF:

• Intel° Xeon° E5-2695 (14 cores) + K80 GPUs.

• cuda/10.0.130.

• CPU version (naïve Fortran), 9.5s; GPU version, 0.3s, 30x speedup.
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■ For anomaly detection in scientific data, statistical models based on higher
moments may be promising.

■ Use of "principal vectors of Kurtosis" as indicators of anomalous events.

■ Metrics quantify change in the principal kurtosis vectors and identify anomalous
subdomains.

■ Construction of PKVs as a symmetric tensor decomposition problem.

■ Refactored linear algebra kernels for tensor formation ported effectively to
GPUs, with —30x speedups.
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• Identifies non-Gaussian independent random variables that are lirftratiaf ries
mixed:

• x = As + n . (x-observed vector; s-independent sources, n-Gaussian i.i.d noise)
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• Identifies non-Gaussian independent random variables that are lirytra Parkes
mixed:

• X := AS + n . (x-observed vector; s-independent sources, n-Gaussian i.i.d noise)

• Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon &
Jutten 2010, Anandkumar et al. 2014)

• M4 := IE[x x x x] - lE[xilx12] IE[x13x14] - IE[xi1x13] IE[x12x14] IE[xi1x14] lE[x12x,3]

• M4 = EL Ks at 0 at 0 at 0 at (K -excess Kurtosis of ith source; a; — columns of A)
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Independent Component Analysis (ICA) Sandia
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• Identifies non-Gaussian independent random variables that are linearly
mixed:

• X := As + n . (x-observed vector; s-independent sources, n-Gaussian i.i.d noise)

• Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon &
Jutten 2010, Anandkumar et al. 2014)

• M4 := E [X' x] lE[.xiPX12] Ek13)Ci41 IE[xilxi3] lEki2xi4] Ekilxi41 lEki2)Ci3]

• M4 = Ei Ksl ai ai ai ai (ic -excess Kurtosis of ith source; a; — columns of A)

• A simpler way to decompose M4 : matricize and SVD (Anandkumar et al. 2014):

• illat(Mj = M= Ei Ks. ai vec(ai0 ai0 ai)

• Caveats: repeated or close eigenvalues.
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Simple 1D configuration with initial temperature inhomogene
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Evolution of Kurtosis vectors.
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Defined per processor, aggregated over
all features

M 1 =

i = 1

[FIMi,p1(t) - FIMi (iffl

FIMi (t)2
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