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2 Tensor Decomposition with Poisson Model
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o CP decomposition for Poisson regression is suitable to analyze count
(non-negative integer) data
o Involves nontrivial nonlinear (and non-convex) constraint optimization

problems
o We discuss how to implement the algorithm with Kokkos.
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3 1 CP-APR

Algorit 1: CPAPR„ Alternating; Block Firam

CPAPR M);
Input : Sp rse Ni-rnode Tensor X of size

number of ectmponents R
Output Kruskal Tensor M [A; AO) AM]
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4 I CP-APR

Algprit m CPAPF

II CPA R (X„M);

F
0 is called Khatori-Rao product
(Column wise Kronecker product)

C = [C11C21C3]
D = [D11D21D3]

COD = [C1(8) D1 l C2® D216-30 D3] 1
Input Sp rse N-mode Tensor X of size <

number of components R
1 Tensor M [A; AM , AM]Output: Krus
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5 I CP-APR

Algorithm 1: CPAPF

CPAPR Or, M);
Input Sp rse N-

number o
Output): Kruskal T
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H is expressed in sparse matrix (indices and values).
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6 1 CP-APR

Algorithm II: CPAPI
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H is expressed in sparse matrix (indices and values).
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7 Parallelism in the key computation

A(n)

n (n) and X

(It's sparse and irregular)

Algorithm #1: Data Parallel Computation
uSteepest Descent-like algorithm to update the all rows of A(n)
0 Requires many iterations to converge

Algorithm #2: Task Parallel Computation
oConstraint Newton-based optimization for the individual rows of AO')
oFor each row, the optimization solver is executed independently

oBetter convergence property



8 Introducing Data Parallelism CP-APR Multiplicative Update

Relatively Straightforward
Kokkos::View to express all data structures
oFactor Matrices A(n)

oUnfolded Tensor

Sparse Tensor

Data parallelism
parallel for

parallel reduce

Works like OpenMP

Kokkos::parallel for (policy, KOKKOS LAMBDA (Policy::member type team)
{

const auto iNonz_start team.league_rank()*TeamSize;
const auto iNonz_end - iNonz_start + TeamSize < sparse_nElement ? iNonz_start + TeamSize : sparse_nElement;

Kokkos::parallel_for (Kokkos:JeamThreadRange(team, iNonz_start, iNonz_end), [&] (ElemIdx iNnz)
{

const auto index = indices(iDim,iNnz);
KruskalValue dVal = ;
Kokkos::parallel_reduce (Kokkos::ThreadVectorRange(team, kruskal_nComponent), (SubIdx iComp, KruskalValue &ldVal)
{

ldVal kData(index, itomp) *pi(iNnz, iComp);
1, dVal);

dVal = static_casE<KruskalValue>(spData(iNnz)) /
static cast<KruskalValue>(max(static cast<KruskalValue›.(eps), static_casi<KruskalValue›(dVal)));

Kokkos::parallel_for (Kokkos::ThreadVectorRange(team, kruskal_n(omponent), [&] (SubIdx itomP)

Kokkos::atomic_add(&phi(index, iComp), dVal * pi(iNnz, iComp ));

1);
1);

));



9 Introducing GPUs: CP-APR, Multiplicative Update

Poor performance with UVM option
Order of magnitude slow down
Chose explicit data movement

Extra care is taken to introducing math functions inside
parallel_for/parallel_reduce
cmax, min, fabs and log for GPUs



Introducing GPUs: CP-APR, Multiplicative Update (Data Partitioning)
10

Mode-1p 1 1 1
Mode-2 3 4 1

INDICES
(_indices)

Mode-3 5 1 2

Nonzero
Entries (_data)

LAE

CPU version exploits row-wise data partitioning
oAll thread makes exclusive access to individual rows (no atomics)

oGPU leads poor utilization of computing resources for rows with few nonzero entries

oRequire extra indexing to access tensor elements by row in each mode

( Non-contiguous memory access to sparse tensor data x

0GPU version exploits direct partitioning the sparse tensor (COO) data format
oMultiple threads accesses the same rows

oContiguous memory access to II(n) and X

Exploit GPU Atomics to avoid race conditions



CP-APR-MU: Performance on GPUs (10 inner, 10 outer
iterations, 10 components)

Data

Random

LBNL

NELL-2

NELL-1

Delicious

Haswell CPU
1-core

2 Haswell
CPUs

14-cores
Time(s) Speedup Time(s)

185 1 22

39 1 19

1157 1 137

3365 1 397

4170 1 2183

2 Haswell
CPUs

28-cores

Intel KNL
(Cache
Mode)

68-core
CPU

NVIDIA
P100 GPU

NVIDIA
V100 GPU

Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

8.4 13 14.11 8.4 22.01 4.47 41.31 3.01 61.53

2.05 13 3.0 33 1.18 2.99 13.04 2.09 18.66

8.44 87 13.29 100 11.02 47.17 24.52 28.80 40.17

16.62 258 20.9 257 10.86 OOM OOM

1.91 1872 2.23 3463 1.41 OOM OOM



12 Performance Comparison: Atomic vs Non-Atomic
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Lower is better

Intel CPUs: Software-based atomic operations

NVIDIA GPUs: Hardware-based atomic operations

•



13 Adapting Kokkos to CP-APR-Newton for Row Subproblems

rNewton Solver-11

I Newton Solver I

Newton Solver

Task parallelism using
Parallel_for/parallel_reduce
Run the same Newton algorithm

Two types of Newton
Algorithms
Projected Damped Newton (PDNR)

Projected Quasi Newton (PQNR)

oPDNR involves:
Dense linear algebra for computing
Hessian

DOT, GEMM, GEMV, TRSV and POSV
(Cholesky factorization and solve)

PQNR
_ More iterations to converge

oVector dot product

oLess temporary storage



14  Adapting Kokkos to CP-APR-Newton for Row Subproblems

Kokkos: : paral.lel_reduce(
tearn_palicy .set_scratch_size( , Kokkos : : Per Team(s c ratch_per_team)) i
DampedNewtonKernel<tearn_policy_t, NumericTypes>{

/* pi = t/ pis
/* dKdota = */ kruskalOutput .get_factor_matrix(iDim),
/* nonz_loc — */ nonzLocs [iDini],
/* nonz loc_idx — */ nonzLocsIdx[i Dim] ,
/* sporse_doto = */ sparseInput .get_data_view(),
/* configurotion — */ _config 11
/* input info — */ sparse_tensor_info,
/* kruskoLinfo = */ kruskal_info

1,
reducer_typeimodeValues1

);

Task parallelism using
Parallel_for/parallel_reduce
Run the same Newton algorithm

Two types of Newton
Algorithms
Projected Damped Newton (PDNR)

Projected Quasi Newton (PQNR)

oPDNR involves:
Dense linear algebra for computing
Hessian

DOT, GEMM, GEMV, TRSV and POSV
(Cholesky factorization and solve)

PQNR
More iterations to converge

cVector dot product

c Less temporary storage



15 Inside "Newton Method Kernel"

Create RowSubProblem
Solver class to manage
oScratch space allocation

oExecution of Newton Iteration

The solver is called inside
parallel_reduce
The solver is assigned to single
"team"

We have had hard time to
understand the league, team,
thread, vector

KOKKOS INLINE FUNCTION
void operator()(
team_member_t const& team_member,
reducer_value_t& output
) const

//Reaciability aliases:
auto iRow - team_member.league_rank();

//Construct the row subproblem Solver
auto row_solver = RowSubProblemDampedNewton<TeamPolicy, NumericalTypes>{

iRow - */sub_index_t(iRow),
/* kernel = *7 *this,
/* team member - Vteom_member

;

if(not row_solver.has_nonzero_entries())
{

sparten;:deep_copy(team_member, dKdata, );

else
{

auto result - row_solver._solve().;

cutput.row_vars_madified = output.row_vars_modified II result.first;
if(result.second r output.max_kkt_violation) {
output.max_kkt_violation - result.secand;

// TOW function evaluation count and inner iterations



16 inside "Row Subproblem Solver"

Utilize TeamThread or
ThreadVector Range to
parallelize vector operations.

Team-wise synchronization

Class methods for
oGradient computation

oSearch direction computation

oEvaluation of the objective function

oLine Search

// Perform iterations to solve the row subproblem.
for (sub_index_t iIts = ; iIts < _config.max_inner_iterations; ++iIts)
{

if( iIts = )
{ 

// set the initial error
dInitialKktError = dKktError;

1
// Gradient is 1 - phi, where
// phi_j = sum i=1:nnz X[i] / (sum r=1:R m[r] Pi[i,r]), for j=1:R
// Save phi to use later in computing the Hessian.
this->_compute_phi();

// Compute the gradient and maximum KKT error for the row subproblem.
dKktError =
Kokkos::parallel_reduce(
Kokkos::ThreadVectorRange(_team_member, nComps),

KOKKOS FUNCTION (sub index_t iComp, kruskal value t& dKktErrorLocal) (
_daGrad(iComp) = 1 ' - _daphi(icomp);
kruskal_value_t d = min(_daVars(iComp), _daVars(icomp));
dKktErrorLocal = max(abs(d), dKktError);

) ;

},
Kokkos::Max<kroskal_value_t>fdKktErrorl

if (dKktError < _config.row_tolerance) I f...1

// Compute a search direction based active and free variables,
// using a damped Newton step for the free variables]
_compute_search_dir( dMuDamping, dPredictedReduction );
_team_member.team_barrier();

// Perform a line search.
kruskal_value_t dAred; // is this unused?!??
this->_line_search(
/* daRowVars = */ _daVarsOld,
/* daRowGrad = */ _daGradOld,
/* dNewRowVars = */ _daVars,
/* dObjNew = */ dObj,
/* dUnitStepAred = */ dAred,
/* nRetCode = */ nlineSearchCode

);

if (dPredictedReduction ==
else ( {...}

) f...1 I



17 nside Search Direction Computation

spartenBlas::gemm('T', 'N', nNumFree, nNumFree, _nNonz, tempOne,
daTmpMatl, _nNonz, dampMaZ, _nNonz, tempOne, dareeHession,
nNumFree );

Kokkos::parallel_for (
Kokkos::ThreadvectorRange( _team_member, nNumFree ), KOKKOS_FUNCTION (sub_index_t iNum ) ( 

1);
_team_member.team_barrier();
auto& daFreeSearch = _dowork14

if (spartenBlas::posv(nNumFree, daFreeHessian, daFreeSearch)) f...1 ) 41

auto& da5olution - _daWark3;
Kokkos::parallel_for ( Kokkos::ThreadVectorRange( _team_member, nNumFree), KOKKOS_FUNCTION (sub_index_t iNum )

1);
_team_member.team_barrier();

spartenBlas::trmv(M, 'T', 'N', nNumFree, dareeHessian, nNumFree, daSolution, static cast<sub_index_t>(1));
spartenBlas::trmv(M, 'N', 'N', nNumFree, dareeHessian, nNumFree, daSolution, static cast<sub_index_t>(1));

Hessian Computation of PDNR involves multiple BLAS like
computation

Team-based
o One of the dimensions is small (5-200) and fixed all across the rows

GEMM, POSV, DOT, TRMV
Another dimension depends on number of nonzero entries in the row (1-1000)
GEMM, GEMV

We need optimized kernels executed by a single team.
Opportunity for KokkosKernels!



18 Conclusion

Development of Portable on-node Parallel CP-APR Solvers
cData parallelism for MU method

cPerformance on CPU, Manycore and GPUs

cAtomic operations boost the performance of GPUs, which eliminates the need
for the extra indexing (reordering)

PDNR/PQNR solver is under development

We have struggled to introduce the advanced features of Kokkos
„Scratch space

oNested parallelism

For performance tuning, we need more help from Kokkos and
KokkosKernels developers



19 Extra Slides CP-APR-MU Performance



20 Performance Test

Strong Scalability

Problem size is fixed

Random Tensor

3K x 4K x 5K, 10M nonzero entries

100 outer iterations

Realistic Problems

Count Data (Non-negative)

. Available at http://frostt.io/

. 10 outer iterations

Dimensions Nonzeros

LBNL 2Kx 4Kx 2Kx 4Kx 866K 1.7M

NELL-2 12K x 9K x 29K 77M

NELL-1 3M x 2M x 25M 144M

Delicious 500K x 17M x 3M x 1K 140M

Rank (*)

10

10

10

10

(*) if not indicated.



21 Scalability of CPAPR-MU on CPU (Random)
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22  Performance Comparison: Atomic vs Non-Atomic
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Performance of CP-APR-MU on
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Performance of CP-APR-MU on
V100

3Kx4Kx5K Random Sparse Tensor
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• No Atomic • Atomic • No Atomic • Atomic

Intel CPUs: Software-based atomic operations

NVIDIA GPUs: Hardware-based atomic operations



23 Performance of CPU-APR-MU with respect to different rank size
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Performance of CP-APR-MU (LBNL-Network) with respect to different
24 rank sizes
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25 CPAPR-PDNR on CPU(Random)
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2 Haswell (14 core) CPUs per node, HyperThreading disabled

1

•-
l  .1 l i N • •

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

• Pi RowSub


