
Development of parallel sparse CP-APR
tensor decomposition solvers

Kokkos User Group Meeting, 04/23/2019

PRESENTED BY

Keita Teranishi

David Hollman, Richard Barrett, Daniel
Dunlavy, and Tamara Kolda

QM!
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ei Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-4996C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Tensor Decomposition with Poisson Model

r•-i Poisson
x

al

b 1
C2

 b2

0.40

bR 0.35

0.30

- 0.25
i
x 0.20

0.15

0.10

aR 0.05

0.00

xijk (N-) Poisson(miik) where mijk = Á, air bj, ck,

o CANDECOMP/PARAFAC (CP) decomposition

P(X = x) =
x!

■

• A=1 -
• A=4

• A=10

•
0

•
• 0 0 •

0 5 10 15
k

exp(—A)Ax

o CP decomposition for Poisson regression is suitable to analyze count
(non-negative integer) data
o Involves nontrivial nonlinear (and non-convex) constraint optimization

problems
o We discuss how to implement the algorithm with Kokkos.

20

3 1 CP-APR

Algorit 1: CPAPR„ Alternating; Block Firam

CPAPR M);
Input : Sp rse Ni-rnode Tensor X of size

number of ectmponents R
Output Kruskal Tensor M [A; AO) AM]

2

rep vt;111,
fizIr4

5

83

„ N do
Let 11(n) (A(N) 0

Compute A(0 that minimize Pl(
A()

end,
a until ?de sublzkrabk 0 re ged;

x 12 X N t

>

Minimization problem is expressed as:

rninAlltb0 /OM) e A()) A (

4 I CP-APR

Algprit m CPAPF

II CPA R (X„M);

F
0 is called Khatori-Rao product
(Column wise Kronecker product)

C = [C11C21C3]
D = [D11D21D3]

COD = [C1(8) D1 l C2® D216-30 D3] 1
Input Sp rse N-mode Tensor X of size <

number of components R
1 Tensor M [A; AM , AM]Output: Krus

2

3 rep:it
4 few n, • „ N do
5 Let = (A.(N) 0

Compute A(141 that minimize f)17.(
7 24(

end,
until ail mode, suprobie

ei0 Wi N.,

x „./7N and the

Iterate over modes

) AO) T

> o

Minimization problem is expressed as:

minA04>nuf(A.") e A() (-) A (' 11())]

5 I CP-APR

Algorithm 1: CPAPF

CPAPR Or, M);
Input Sp rse N-

number o
Output): Kruskal T

2

rep t
4

5

7
83

F
0 is called Khatori-Rao product
(Column wise Kronecker product)

C = [C11C21C3]
D = [D11D21D3]

COD = [C1(8) D1 l C2® D216-30 D3]

H is expressed in sparse matrix (indices and values).
(v t

fOr „N do
Let am (Am 0
Compute AW that min mize

end.

A;A0)... Aw)]

9 until ?de mbprabkms co lo ' 7)

Minimization problem is expressed as:

minA04>0 f (A(n)) e))

6 1 CP-APR

Algorithm II: CPAPI

Qp.Apg, (x,m);',
input Sparse N-

number o

0.)utput: Kru

2

3 rep
for 'a = 11 ,)N do

5 Let 11.04 (A.(N) 0 0 A.(

COMpllte AW that minimize MOO) SA. .14(n) >

A,(144 (A(')

8

rn able 3 led;

0 is called Khatori-Rao product
(Column wise Kronecker product)

C = [C11C21C3]
D = [D11D21D3]

COD = [C1(8) D1 l 6-2 ® D216-30 D3] 1

id

H is expressed in sparse matrix (indices and values).
WI lir 14°

A;) A()...A(N)]

Iterate over modes

A(11) T

95%+ of Total 1111
Execution Time

Minimization problem is expressed as:

rninA(Abof(11())) A(11(10)]

7 Parallelism in the key computation

A(n)

n (n) and X

(It's sparse and irregular)

Algorithm #1: Data Parallel Computation
uSteepest Descent-like algorithm to update the all rows of A(n)
0 Requires many iterations to converge

Algorithm #2: Task Parallel Computation
oConstraint Newton-based optimization for the individual rows of AO')
oFor each row, the optimization solver is executed independently

oBetter convergence property

8 Introducing Data Parallelism CP-APR Multiplicative Update

Relatively Straightforward
Kokkos::View to express all data structures
oFactor Matrices A(n)

oUnfolded Tensor

Sparse Tensor

Data parallelism
parallel for

parallel reduce

Works like OpenMP

Kokkos::parallel for (policy, KOKKOS LAMBDA (Policy::member type team)
{

const auto iNonz_start team.league_rank()*TeamSize;
const auto iNonz_end - iNonz_start + TeamSize < sparse_nElement ? iNonz_start + TeamSize : sparse_nElement;

Kokkos::parallel_for (Kokkos:JeamThreadRange(team, iNonz_start, iNonz_end), [&] (ElemIdx iNnz)
{

const auto index = indices(iDim,iNnz);
KruskalValue dVal = ;
Kokkos::parallel_reduce (Kokkos::ThreadVectorRange(team, kruskal_nComponent), (SubIdx iComp, KruskalValue &ldVal)
{

ldVal kData(index, itomp) *pi(iNnz, iComp);
1, dVal);

dVal = static_casE<KruskalValue>(spData(iNnz)) /
static cast<KruskalValue>(max(static cast<KruskalValue›.(eps), static_casi<KruskalValue›(dVal)));

Kokkos::parallel_for (Kokkos::ThreadVectorRange(team, kruskal_n(omponent), [&] (SubIdx itomP)

Kokkos::atomic_add(&phi(index, iComp), dVal * pi(iNnz, iComp));

1);
1);

));

9 Introducing GPUs: CP-APR, Multiplicative Update

Poor performance with UVM option
Order of magnitude slow down
Chose explicit data movement

Extra care is taken to introducing math functions inside
parallel_for/parallel_reduce
cmax, min, fabs and log for GPUs

Introducing GPUs: CP-APR, Multiplicative Update (Data Partitioning)
10

Mode-1p 1 1 1
Mode-2 3 4 1

INDICES
(_indices)

Mode-3 5 1 2

Nonzero
Entries (_data)

LAE

CPU version exploits row-wise data partitioning
oAll thread makes exclusive access to individual rows (no atomics)

oGPU leads poor utilization of computing resources for rows with few nonzero entries

oRequire extra indexing to access tensor elements by row in each mode

(Non-contiguous memory access to sparse tensor data x

0GPU version exploits direct partitioning the sparse tensor (COO) data format
oMultiple threads accesses the same rows

oContiguous memory access to II(n) and X

Exploit GPU Atomics to avoid race conditions

CP-APR-MU: Performance on GPUs (10 inner, 10 outer
iterations, 10 components)

Data

Random

LBNL

NELL-2

NELL-1

Delicious

Haswell CPU
1-core

2 Haswell
CPUs

14-cores
Time(s) Speedup Time(s)

185 1 22

39 1 19

1157 1 137

3365 1 397

4170 1 2183

2 Haswell
CPUs

28-cores

Intel KNL
(Cache
Mode)

68-core
CPU

NVIDIA
P100 GPU

NVIDIA
V100 GPU

Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

8.4 13 14.11 8.4 22.01 4.47 41.31 3.01 61.53

2.05 13 3.0 33 1.18 2.99 13.04 2.09 18.66

8.44 87 13.29 100 11.02 47.17 24.52 28.80 40.17

16.62 258 20.9 257 10.86 OOM OOM

1.91 1872 2.23 3463 1.41 OOM OOM

12 Performance Comparison: Atomic vs Non-Atomic

700

600

500

400

300

Performance of CP-APR-MU on Haswell CPUs Performance of CP-APR-MU on V100

1

3Kx4Kx5K Random Sparse Tensor

1 1
R=10 R=16 R=32

700

600

500

400

300

200

100

0

3Kx4Kx5K Random Sparse Tensor

I - 1N 1
R=10 R=16 R=32

• No Atomic • Atomic • No Atomic • Atomic

Lower is better

Intel CPUs: Software-based atomic operations

NVIDIA GPUs: Hardware-based atomic operations

•

13 Adapting Kokkos to CP-APR-Newton for Row Subproblems

rNewton Solver-11

I Newton Solver I

Newton Solver

Task parallelism using
Parallel_for/parallel_reduce
Run the same Newton algorithm

Two types of Newton
Algorithms
Projected Damped Newton (PDNR)

Projected Quasi Newton (PQNR)

oPDNR involves:
Dense linear algebra for computing
Hessian

DOT, GEMM, GEMV, TRSV and POSV
(Cholesky factorization and solve)

PQNR
_ More iterations to converge

oVector dot product

oLess temporary storage

14 Adapting Kokkos to CP-APR-Newton for Row Subproblems

Kokkos: : paral.lel_reduce(
tearn_palicy .set_scratch_size(, Kokkos : : Per Team(s c ratch_per_team)) i
DampedNewtonKernel<tearn_policy_t, NumericTypes>{

/* pi = t/ pis
/* dKdota = */ kruskalOutput .get_factor_matrix(iDim),
/* nonz_loc — */ nonzLocs [iDini],
/* nonz loc_idx — */ nonzLocsIdx[i Dim] ,
/* sporse_doto = */ sparseInput .get_data_view(),
/* configurotion — */ _config 11
/* input info — */ sparse_tensor_info,
/* kruskoLinfo = */ kruskal_info

1,
reducer_typeimodeValues1

);

Task parallelism using
Parallel_for/parallel_reduce
Run the same Newton algorithm

Two types of Newton
Algorithms
Projected Damped Newton (PDNR)

Projected Quasi Newton (PQNR)

oPDNR involves:
Dense linear algebra for computing
Hessian

DOT, GEMM, GEMV, TRSV and POSV
(Cholesky factorization and solve)

PQNR
More iterations to converge

cVector dot product

c Less temporary storage

15 Inside "Newton Method Kernel"

Create RowSubProblem
Solver class to manage
oScratch space allocation

oExecution of Newton Iteration

The solver is called inside
parallel_reduce
The solver is assigned to single
"team"

We have had hard time to
understand the league, team,
thread, vector

KOKKOS INLINE FUNCTION
void operator()(
team_member_t const& team_member,
reducer_value_t& output
) const

//Reaciability aliases:
auto iRow - team_member.league_rank();

//Construct the row subproblem Solver
auto row_solver = RowSubProblemDampedNewton<TeamPolicy, NumericalTypes>{

iRow - */sub_index_t(iRow),
/* kernel = *7 *this,
/* team member - Vteom_member

;

if(not row_solver.has_nonzero_entries())
{

sparten;:deep_copy(team_member, dKdata,);

else
{

auto result - row_solver._solve().;

cutput.row_vars_madified = output.row_vars_modified II result.first;
if(result.second r output.max_kkt_violation) {
output.max_kkt_violation - result.secand;

// TOW function evaluation count and inner iterations

16 inside "Row Subproblem Solver"

Utilize TeamThread or
ThreadVector Range to
parallelize vector operations.

Team-wise synchronization

Class methods for
oGradient computation

oSearch direction computation

oEvaluation of the objective function

oLine Search

// Perform iterations to solve the row subproblem.
for (sub_index_t iIts = ; iIts < _config.max_inner_iterations; ++iIts)
{

if(iIts =)
{

// set the initial error
dInitialKktError = dKktError;

1
// Gradient is 1 - phi, where
// phi_j = sum i=1:nnz X[i] / (sum r=1:R m[r] Pi[i,r]), for j=1:R
// Save phi to use later in computing the Hessian.
this->_compute_phi();

// Compute the gradient and maximum KKT error for the row subproblem.
dKktError =
Kokkos::parallel_reduce(
Kokkos::ThreadVectorRange(_team_member, nComps),

KOKKOS FUNCTION (sub index_t iComp, kruskal value t& dKktErrorLocal) (
_daGrad(iComp) = 1 ' - _daphi(icomp);
kruskal_value_t d = min(_daVars(iComp), _daVars(icomp));
dKktErrorLocal = max(abs(d), dKktError);

) ;

},
Kokkos::Max<kroskal_value_t>fdKktErrorl

if (dKktError < _config.row_tolerance) I f...1

// Compute a search direction based active and free variables,
// using a damped Newton step for the free variables]
_compute_search_dir(dMuDamping, dPredictedReduction);
_team_member.team_barrier();

// Perform a line search.
kruskal_value_t dAred; // is this unused?!??
this->_line_search(
/* daRowVars = */ _daVarsOld,
/* daRowGrad = */ _daGradOld,
/* dNewRowVars = */ _daVars,
/* dObjNew = */ dObj,
/* dUnitStepAred = */ dAred,
/* nRetCode = */ nlineSearchCode

);

if (dPredictedReduction ==
else ({...}

) f...1 I

17 nside Search Direction Computation

spartenBlas::gemm('T', 'N', nNumFree, nNumFree, _nNonz, tempOne,
daTmpMatl, _nNonz, dampMaZ, _nNonz, tempOne, dareeHession,
nNumFree);

Kokkos::parallel_for (
Kokkos::ThreadvectorRange(_team_member, nNumFree), KOKKOS_FUNCTION (sub_index_t iNum) (

1);
_team_member.team_barrier();
auto& daFreeSearch = _dowork14

if (spartenBlas::posv(nNumFree, daFreeHessian, daFreeSearch)) f...1) 41

auto& da5olution - _daWark3;
Kokkos::parallel_for (Kokkos::ThreadVectorRange(_team_member, nNumFree), KOKKOS_FUNCTION (sub_index_t iNum)

1);
_team_member.team_barrier();

spartenBlas::trmv(M, 'T', 'N', nNumFree, dareeHessian, nNumFree, daSolution, static cast<sub_index_t>(1));
spartenBlas::trmv(M, 'N', 'N', nNumFree, dareeHessian, nNumFree, daSolution, static cast<sub_index_t>(1));

Hessian Computation of PDNR involves multiple BLAS like
computation

Team-based
o One of the dimensions is small (5-200) and fixed all across the rows

GEMM, POSV, DOT, TRMV
Another dimension depends on number of nonzero entries in the row (1-1000)
GEMM, GEMV

We need optimized kernels executed by a single team.
Opportunity for KokkosKernels!

18 Conclusion

Development of Portable on-node Parallel CP-APR Solvers
cData parallelism for MU method

cPerformance on CPU, Manycore and GPUs

cAtomic operations boost the performance of GPUs, which eliminates the need
for the extra indexing (reordering)

PDNR/PQNR solver is under development

We have struggled to introduce the advanced features of Kokkos
„Scratch space

oNested parallelism

For performance tuning, we need more help from Kokkos and
KokkosKernels developers

19 Extra Slides CP-APR-MU Performance

20 Performance Test

Strong Scalability

Problem size is fixed

Random Tensor

3K x 4K x 5K, 10M nonzero entries

100 outer iterations

Realistic Problems

Count Data (Non-negative)

. Available at http://frostt.io/

. 10 outer iterations

Dimensions Nonzeros

LBNL 2Kx 4Kx 2Kx 4Kx 866K 1.7M

NELL-2 12K x 9K x 29K 77M

NELL-1 3M x 2M x 25M 144M

Delicious 500K x 17M x 3M x 1K 140M

Rank (*)

10

10

10

10

(*) if not indicated.

21 Scalability of CPAPR-MU on CPU (Random)

2000

1800

1600

1400

1200

1000

800

600

400

200

0

1
1

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core) CPUs

per node, HyperThreading disabled

1

-
2 4 6 8 10 12 14 16 18 20 22 24 26 28

• Pi Phi+ Update

22 Performance Comparison: Atomic vs Non-Atomic

700

600

500

400

300

200

100

0

Performance of CP-APR-MU on
Haswell CPUs

3Kx4Kx5K Random Sparse Tensor

11 1 1
R=10 R=16 R=32

Performance of CP-APR-MU on
V100

3Kx4Kx5K Random Sparse Tensor
700

600

500

400

300

200

100

0 —

R-10

1-
R=16 R=32

• No Atomic • Atomic • No Atomic • Atomic

Intel CPUs: Software-based atomic operations

NVIDIA GPUs: Hardware-based atomic operations

23 Performance of CPU-APR-MU with respect to different rank size

4000

3500

3000

2500

2000

1500

1000

500

0

CP-APR-MU (Random tensor 3Kx4Kx5K, 100 outer iterations)

1:6 32 48 64 80 96 112

Volta —40— Pascal —40— Haswell

128: 144 :160 :176 192

Performance of CP-APR-MU (LBNL-Network) with respect to different
24 rank sizes

300

250

200

,,,
-o
o 150u
o
if)

100

50

0
0.00

CP-APR-MU (LBNL-NETWORK, 10 outer iterations)

A)

INI...11

32.00 64.00 96.00 128.00

Number of Ranks

160.00

—•— Volta —4,— Pascal —4,— Haswell

192.00 224.00 256.00

25 CPAPR-PDNR on CPU(Random)

2500

2000

1500

1000

500

0

CpAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,
2 Haswell (14 core) CPUs per node, HyperThreading disabled

1

•-
l .1 l i N • •

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

• Pi RowSub

