This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-4996C

Development of parallel sparse CP-APR
tensor decomposition solvers

Kokkos User Group Meeting, 04/23/2019

PRESENTED BY

Keita Teranishi

Sandia National Laboratories is a multimission

. . - laboratory managgd an_d operatgd by Natior!al

David Hollman, Richard Barrett, Daniel Teckackoay & Ealoenciy Shuions o Sndl,

D un I av y an d Ta mara K o) I d a International Inc., for the U.S. Department of
?

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2

Tensor Decomposition with Poisson Model
€1 c2 CR 0.40 . ‘ :
[)\l/ b]_)\2/ b2 AR/ b]) 0.35 *9 o \=1
| | | 0.30 ® A=d
A=10
i £
- * * + % 0.5 : *
010l /| &S %
\ - aj - ao AR j 0.05 .. OUDC’.. Ouuﬂ
P PO o | TOPPPPOE . T
0 0 5 10 15 20
3 k
x;jr ~ Poisson(m;;) where m;;, = E My Qi Dy Gy I exp(—A)A®
= T) =
r !

CANDECOMP/PARAFAC (CP) decomposition

CP decomposition for Poisson regression is suitable to analyze count

(non-negative integer) data

o Involves nontrivial nonlinear (and non-convex) constraint optimization
problems

We discuss how to implement the algorithm with Kokkos.

3

CP-APR

Algorithm 1: CPAPR, Alternating Block Framework

1 CPAPR. (X, M);
Input : Sparse N-mode Tensor & of size I} X Iy x ...In and the
number of components R
Output: Kruskal Tensor M = [X; AW ... AWN)]
2 Initialize
3 repeat

4 forn=1,...,N do lterate over modes

s Let TI(™ — ((Al N), @@ Aln+1) ® A{m—ﬂ)} ®... A}({Il)))’ﬂ‘]
6 Compute A™ that minimize f(4™)s.t. A™ >0

. A £ A

8 end

o until all mode subproblems converged;

Minimization problem is expressed as:

min g5 F(A™) = T [AMT™ — X, * log(AMTI™)]e

41 CP-APR @© is called Khatori-Rao product
(Column wise Kronecker product)

C = [C11C2|C5]
D = [D,|D;|Ds]
Algorithm 1: CPAPRH COD =[C;® D;| C,Q D,|C3Q D3]
1 CPAPR. (X, M);
Input : Sparse N-mode Tensor X of size Iy X Iy x ... Iy and the
number of components K
Output: Kruskal Tensor M = [x; AW ... AN
2 Imitialize

3 repeat
4 forn=1,...,N do Iterate over modes
5 Let TI(™) —= (AN ... A@H) o AV o .. A‘((Ti)))ﬂ”
6 Compute A™ that minimize j’((ﬁ\:((m)))) s.t. A >0
7 Al Al™)
end

o until all mode subproblems converged;

Minimization problem is expressed as:

min g g f(A™) = T [AMII™ — X () * log(A™I™)]e

CP-APR @© is called Khatori-Rao product
(Column wise Kronecker product)

C = [C1|C2|C3]
D = [D,|D,|Ds]

Algorithm 1: CPAPR COD =[C;® D, | C,® D,|C5Q Ds]

1 CPAPR (X, M);

AR T o | . "
Input : Sparse N g [lis expressed in sparse matrix (indices and values).
number of ¢ Sanns

Output: Kruskal To) AW)J]\
2 Initialize
3 repeat
4 forn=1/..,N do lterate over modes
5 Let H(W) (AN ... A+ o A(r-1) o .. A((TLD)T’
6 Compute A™ that minimize f(A™) s.t. A™ >0
7 A A
8 end

o until all mode subproblems converged;

Minimization problem is expressed as:

min g g F(AM) = eT[AMII™ — X,y * log(AMTT™)]e

6

CP-APR @© is called Khatori-Rao product
(Column wise Kronecker product)

C = [C1]C|C5]
D = [D,|D;|Ds]
Algorithm 1: CPAPE COD = [(;® D;| (;® D,|C3® D3]

1 CPAPR (X, M);

o . o £ N o
Input : Sparse N-myER expressed in sparse matrix (indices and values).
number of CONTPONCIITS
Output: Kruskal Tef
2 Initialize

4 fmr m=1 lterate over modes

5 Let T H((??»‘)) ((A(N)) ®--- @A) g Al-D g AT

8 Compute A™) that minimize f(A®™) s.t. A® >0 jon |
" A® A 95%+ of Total

8 | end Execution Time

o until all modé subproblems converged;

Minimization problem is expressed as:

min g g f(A™) = eT[AMII™ — X () * log(A™I™)]e

7 1 Parallelism in the key computation

H(n) and Y

(It’s sparse and irregular)

A

oAlgorithm #1: Data Parallel Computation
oSteepest Descent-like algorithm to update the all rows of A
oRequires many iterations to converge

oAlgorithm #2: Task Parallel Computation
oConstraint Newton-based optimization for the individual rows of A
oFor each row, the optimization solver is executed independently
oBetter convergence property

8 I Introducing Data Parallelism CP-APR Multiplicative Update

oRelatively Straightforward

oKokkos::View to express all data structures

OFactor Matrlces A(n) Kokkos: :parallel_for (policy, KOKKOS_LAMBDA (Policy::member_type team)
{

n Nonz_start = team,league_rank()*TeamSize;
OunfOIded Tensor H() st auto iNonz_end = iNonz_start + TeamSize < sparse_nElement ? iNonz_start + TeamSize : sparse_nElement;

OSpa rse Tensor X l;okkos::pamlleljor' (Kokkos: : TeamThreadRange(team, iNonz_start, iNonz_end), [&] (ElemIdx iNnz)

index = indices(iDim,iNnz);
KruskalValue dVal = @;
Kokkos: :parallel_reduce (Kokkos::ThreadVectorRange(team, kruskal_nComponent), [=] (SubIdx iComp, KruskalValue &ldVal)

. |
O Data pa ra I Iel Ism ldval += kData(index, iComp) *pi(iNnz, iComp);
}, dval);
O pa ra I Iel_for kalValue>(iNnz)) /
lue>(ma ruskalValue-=(eps), stati
@) pa ra”el rEduce 7 rallel_for (Kokkos::ThreadVectorRange(team, kruskal_nComponent),

Kokkos : : atomic_add(&phi(index, iComp), dVal * pi(iNnz, iComp));
D;
b;

oWorks like OpenMP

9 I Introducing GPUs: CP-APR, Multiplicative Update

oPoor performance with UVM option
oOrder of magnitude slow down
oChose explicit data movement

oExtra care is taken to introducing math functions inside
parallel for/parallel _reduce

omax, min, fabs and log for GPUs

Introducing GPUs: CP-APR, Multiplicative Update (Data Partitioning)

10

Mode-1

Mode-2

INDICES
(_indices)

Mode-3

Nonzero
Entries (_data)

oCPU version exploits row-wise data partitioning
oAll thread makes exclusive access to individual rows (no atomics)
oGPU leads poor utilization of computing resources for rows with few nonzero entries
oRequire extra indexing to access tensor elements by row in each mode
oNon-contiguous memory access to sparse tensor data y

oGPU version exploits direct partitioning the sparse tensor (COO) data format
oMultiple threads accesses the same rows
oContiguous memory access to [1(™ and ¥

oExploit GPU Atomics to avoid race conditions

CP-APR-MU: Performance on GPUs (10 inner, 10 outer m
iterations, 10 components) ;

Intel KNL
(Cache

2 Haswell 2 Haswell Mode)
Haswell CPU CPUs CPUs 68-core NVIDIA NVIDIA
1-core 14-cores 28-cores CPU P100 GPU | V100 GPU

Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 185 1 22 8.4 13 1411 8.4 22.01 4.47 41.31 3.01 61.53

LBNL 39 1 19 2.05 13 3.0 33 1.18 2.99 13.04 2.09 18.66

NELL-2 1157 1 137 8.44 87 13.29 100 11.02 47.17 24.52 28.80 40.17

NELL- 3365 1 397 16.62 258 20.9 257 10.86 OOM OOM

Delicious 4170 1 2183 1.91 1872 2.23 3463 1.41 OOM OOM

12 I Performance Comparison: Atomic vs Non-Atomic

Performance of CP-APR-MU on Haswell CPUs Performance of CP-APR-MU on V100
3Kx4Kx5K Random Sparse Tensor 3Kx4Kx5K Random Sparse Tensor
600 600
500 500
400 400
300 300
: I I 200
100 I
O I
R=10 R=16 R=32 0 L -
R=10 R=16 R=32
mNo Atomic mAtomic mNo Atomic m Atomic
Lower is better
Intel CPUs: Software-based atomic operations
NVIDIA GPUs: Hardware-based atomic operations

13 1 Adapting Kokkos to CP-APR-Newton for Row Subproblems |

oTask parallelism using oPDNR involves:
Parallel_for/parallel_reduce oDense linear algebra for computing
oRun the same Newton algorithm Hessian

oDOT, GEMM, GEMV, TRSV and POSV

- Two types of Newton (Cholesky factorization and solve)

Algorithms
oProjected Damped Newton (PDNR)
oProjected Quasi Newton (PQNR)

oPQNR
oMore iterations to converge
oVector dot product
olLess temporary storage

14 I Adapting Kokkos to CP-APR-Newton for Row Subproblems

Kokkos: :parallel_reduce(

team_policy.set_scratch_size(l, Kokkos::PerTeam(scratch_per_team)),
DampedNewtonKernel<team_policy_t, NumericTypes>{

j_a""—* pl — ! /.f pi,

/* didata = */ kruskalOutput.get_factor_matrix(iDim),

/* nonz_loc = */ nonzlLocs[1iDim],

/* nonz_loc_idx = */ nonzLocsIdx[iDim],
/* sparse_data = */ sparselnput.get_data_view(),

/* configuration = */ _config,
7* input_info = */ sparse_tensor_info,
/* kruskal_info = */ kruskal_info

},

reducer_type{modeValues}

i

oTask parallelism using
Parallel_for/parallel_reduce

oRun the same Newton algorithm

oTwo types of Newton
Algorithms
oProjected Damped Newton (PDNR)
oProjected Quasi Newton (PQNR)

oPDNR involves:

oDense linear algebra for computing
Hessian

oDOT, GEMM, GEMYV, TRSV and POSV
(Cholesky factorization and solve)

oPQNR
oMore iterations to converge
oVector dot product
oless temporary storage

15 I Inside “Newton Method Kernel”

oCreate RowSubProblem KOKKOS_INLINE_FUNCTION

void oper
Solver class to manage m_nenber_t const& tean_menber,
educer_value_t& output

oScratch space allocation
oExecution of Newton Iteration

oThe solver is called inside

/7 Readability aliases:
auto iRow = team_member.league_rank();

/7 Construct the row subproblem Solver

pa raIIE| FEd uce 7 row_solver = RowSul blemDampedNewton<TeamPolicy, NumericalTypes>{
- SE x_t(iRow),
oThe solver is assigned to single /* kernel = *
u yy /* team_member = */ team_member
team };
oWe have had hard time to if(not row_solver.has_nonzero_entries())
{
underStand the Ieaguel teaml sparten; : deep_copy(team_member, dKdata, ©);

}

else

{

aguto result = row_solver._solve();

thread, vector

output.row_vars_modified = output.row_vars_modified || result.first;
If(result.second > output.max_kkt_violation) {
output.max_kkt_violation = result.second;

}

A7 TODO function evaluation count and inner iterations

}

16 I Inside “Row Subproblem Solver”

iterations to solve the row g
index_t iIts = 0; iIts < _config.max_inner_iterations; ++iIts)

if(ilts == 0)

oUtilize TeamThread or
ThreadVector Range to S
parallelize vector operations.

Gradient is

/ Compute the gradient and maximum KKT error for the row subproblem.
" . . dKktError = s
oTeam-wise synchronization i e

Kokkos : : ThreadVectorRange(_team_member, nComps),

[&] KOKKOS_FUNCTION (sub_index_t iComp, kruskal_value_t& dKktErrorLocal) {
_daGrad(iComp) = - _daPhi(iComp);
kruskal_value_t d = min(_daVars(iComp), _daVars(iComp));
dKktErrorLocal = max(abs(d), dKktError);

1,

O Cl a SS m et h Od S fo r Kokkos : :Max<kruskal _value_t>{dKktError}

DH
OGradient Computation if (dKktError < _config.row_tolerance) ({...}

oSearch direction computation 7 Comurta ' seanch/dtoaction besed active and thes variohins

/ using a daf“ Mmmr s*ep fOf the e var |

OEvaIuation Of the objective function _compute_search_dir(dMuDamping, dPr‘ed1ctedReduct10n %

_team_member.team_barrier();

oLine Search

Perform a line search.
kruskal_value_t dAred; // is this unused?!??
this->_line_search(
/* daRowVars = */ _daVarsQOld,
* daRc = */ _daGradOld,
/* dNe "S */ _daVars,

*/ dObj,
dUnit Ared */ dAred,
nRetCode = */ nLineSearchCode

>

if (dPredictedReduction ==

17 I Inside Search Direction Computation

spartenBlas::gemm('T', 'N', nNumFree, nNumFree, _nNonz, tempOne,
daTmpMatl, _nNonz, daTmpMat2, _nNonz, tempOne, doFreeHessian,
nNumFree);

Kokkos: :parallel_for (
Kokkos: : ThreadVectorRange(_team_member, nNumFree), [&] KOKKOS_FUNCTION (sub_index_t iNum) { [
1;
_team_member.team_barrier();
autok daFreeSearch = _daWorkl;

if (spartenBlas: :posv(nNumFree, daFreeHessian, daFreeSearch)) [{...}]

agutok daSolution = _daWork3;
Kokkos: :parallel_for (Kokkos::ThreadVectorRange({ _team_member, nNumFree), [&] KOKKOS_FUNCTION (sub_index_t iNum) [{...
1);

_team_member.team_barrier();

spartenBlas::trmv('L', 'T', 'N', nNumFree, daFreeHessian, nNumFree, daSolution, static_cast<sub_index_t=(1));
spartenBlas::trmv('L', 'N', 'N', nNumFree, daFreeHessian, nNumFree, daSolution, static_cost<sub_index_t>(1));

oHessian Computation of PDNR involves multiple BLAS like
computation
o Team-based
o One of the dimensions is small (5-200) and fixed all across the rows
o GEMM, POSV, DOT, TRMV
o Another dimension depends on number of nonzero entries in the row (1-1000)
o GEMM, GEMV

oWe need optimized kernels executed by a single team.
oOpportunity for KokkosKernels!

18 I Conclusion

oDevelopment of Portable on-node Parallel CP-APR Solvers
oData parallelism for MU method
oPerformance on CPU, Manycore and GPUs

oAtomic operations boost the performance of GPUs, which eliminates the need
for the extra indexing (reordering)

oPDNR/PQNR solver is under development

oWe have struggled to introduce the advanced features of Kokkos
oScratch space .
oNested parallelism

oFor performance tuning, we need more help from Kokkos and ‘
KokkosKernels developers

19 I Extra Slides CP-APR-MU Performance

20 | Performance Test

Strong Scalability
° Problem size is fixed

Random Tensor
° 3K x 4K x 5K, 10M nonzero entries
> 100 outer iterations

Realistic Problems
> Count Data (Non-negative)
> Available at http://frostt.io/
> 10 outer iterations

O S A O

LBNL 2K x 4K x 2K x 4K x 866K 1.7M
NELL-2 12K x 9K x 29K 77M
NELL-1 3M x 2M x 25M 144M
Delicious 500K x 17M x 3M x 1K 140M

(*) if not indicated.

21 I Scalability of CPAPR-MU on CPU (Random)

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core) CPUs
per node, HyperThreading disabled

2000
1800
1600
1400
1200

1000

600
400
: Inmnr
0 B EHEEE
1 2 4 6 8 10 12 14 16 18 20 22

24 26 28

800

o

mPi mPhi+ Update

22

Performance Comparison: Atomic vs Non-Atomic

700

600

500

400

300

200

10

o

Intel CPUs: Software-based atomic operations

Performance of CP-APR-MU on
Haswell CPUs
3Kx4Kx5K Random Sparse Tensor

R=10 R=16 R=32

m No Atomic mAtomic

700

600

500

400

300

200

100

Performance of CP-APR-MU on

V100

3Kx4Kx5K Random Sparse Tensor

R=10

NVIDIA GPUs: Hardware-based atomic operations

R=16

m No Atomic m Atomic

R=32

23 I Performance of CPU-APR-MU with respect to different rank size

CP-APR-MU (Random tensor 3Kx4Kx5K, 100 outer iterations)
4000

3500
3000
2500
2000
1500

1000

500 /
——

0 16 32 48 64 80 96 112 128 144 160 176 192

—e—\Volta —e—Pascal —e—Haswell

Performance of CP-APR-MU (LBNL-Network) with respect to different

24 | rank sizes

CP-APR-MU (LBNL-NETWORK, 10 outer iterations)

300

250

200

Seconds
o
(=)

100

50

224.00 256.00

96.00 128.00 160.00 192.00

0.00 32.00 64.00
Number of Ranks

—e—Volta —e—Pascal —e—Haswell

25 I CPAPR-PDNR on CPU(Random)

CpAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,
2 Haswell (14 core) CPUs per node, HyperThreading disabled
2500

2000

1500

1000
500 I
; Illlllllllll

mPi mRowSub

