
EtOrim
EXRSCRLE COMPUTING PROJECT

) Sandia
National FACILITY * 

COMBUSTION
SEARCH

Laboratories .00B

-410

/\

frrr 

1111

BERKELEY LAB

Direct Numerical Simulation of
Multi-Injection Mixing and
Combustion at Compression
Ignition Engine Conditions
M. Rietha, M. Dayb, M. Arientia, H. Kollaa, J.H. Chena

aSandia National Laboratories
bLawrence Berkeley National Laboratory

SAND2019-4955C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Scientific Problem
Application Experiment

LED, lenses,

aperture

www.challenger.corn

Nd:YAG I-CCD
Beam-

splitter
„.

Skeen et al., SAE IJE, 2015.

http://insideunrnannedsysterns.corn

In
je

ct
io

n 
ra

te
 

Main
Inj ection

Pilot

Simulation

Dwell

Pilot
Injection

41, I 4

Main

How does the presence of the pilot injection alter the ignition of the main injection?

 ►
time



PeIeLM Code & Numerical Setup
• PeIeLM — low-Mach adaptive mesh refinement code based on AMReX

• Spectral deferred correction scheme for fluid dynamics-chemistry coupling

• Current multi-physics development: spray, soot, radiation

• Refinement based on temperature gradient, vorticity & 'flame species'

• Typical resolution 0(1-10micron)

• Typical size of simulation:
1B cells (O(100)B cells without AMR)

• 35 species reduced n-dodecane
mechanism (Yao et al., 2017; Borghesi et al., 2018)

• Downscaled conditions compared to
experiment/device (Dalakoti et al., 2017)
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Cases
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Ground operation
High-pressure, 60atm

Moderate temperature, 900K

Exhaust gas recirculation, 15% 02

Pilot 0.5 ms, dwell 0.5 ms, main 0.5 ms

Multi-injection to improve mixture formation, reduce emissions

High-altitude operation (UAV)
Moderate pressure, lOatm

Low temperature, 750K

No exhaust gas recirculation, 21% 02

Pilot 0.208ms ms, dwell 0.992 ms, main 1.138 ms

Multi-injection to reduce signature (IR, smoke), improve ignition reliability,

improve operation with various fuels

Conditions lead to significantly different ignition processes



Ground and UAV operation - OD ignition
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Ignition Sequence UAV Operation
Low-temperature High-temperature

species species
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Mixture fractions track fluid from individual injections (two additional transport equations) 6
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Ignition Sequence UAV Operation - 4.6ms
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Influence of mixing on ignition
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Chemical Explosive Mode Analysis

• Eigen-analysis of the Jacobian of the local chemical source term
diffusion

Dw(y) Dy
Jw = Jw(co + s), J„ =

DtDt T
reaction

A,— be • J, • a,

aw

Y

• CEM is associated with Xe that has a positive real part
• Projection onto CEM to distinguish reaction or diffusion dominated regions

Dbe, DO,
  AeOe + Ae°s + Dt • 

w(y)
Dy 

Aebe • (w + s) Dt

Dco(y) be . T
"w Dtbe Dt

• Combustion mode indicator

a Os/Ow

—1 < a < 1 : auto-ignition (AI) ]
a < —1 : diffusion dominates (extinction)]

l a > 1 : flame propagation

Lu et al., JFM, 2010; Chao et al., PROCI, 2019.



Chemical Explosive Mode Analysis 4ms
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Chemical Explosive Mode Analysis 4.6ms
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Chemical Explosive Mode Analysis Explosion Indices
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Conclusions

• PeIeLM works very well for multi-injection ignition cases

• Differences in temperature/pressure conditions lead to very different ignition behavior

Ground operating conditions

• Strong mixing inhibits ignition of first injection, promotes ignition of second injection

UAV conditions

• Pilot injection does not ignite prior to mixing with main injection for UAV operation

• Pilot supplies low-temperature species that enhance ignition of the second injection

• CEMA provides information on combustion modes (preliminary) — fuel consumption overall

dominated by auto-ignition during low-temperature ignition
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