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ABSTRACT

Radiation transport in stochastic media is a challenging problem type relevant for appli-
cations such as meteorological modeling, heterogeneous radiation shields, BWR coolant,
and pebble-bed reactor fuel. A commonly cited challenge for methods performing trans-
port in stochastic media is to simultaneously be accurate and efficient. Conditional Point
Sampling (CoPS), a new method for transport in stochastic media, was recently shown
to have accuracy comparable to the most accurate approximate methods for a common
1D benchmark set. In this paper, we use a pseudo-interface-based approach to extend
CoPS to application in multi-D for Markovian-mixed media, compare its accuracy with
published results for other approximate methods, and examine its accuracy and efficiency
as a function of user options. CoPS is found to be the most accurate of the compared
methods on the examined benchmark suite for transmittance and comparable in accu-
racy with the most accurate methods for reflectance and internal flux. Numerical studies
examine accuracy and efficiency as a function of user parameters providing insight for
effective parameter selection and further method development. Since the authors did not
implement any of the other approximate methods, there is not yet a valid comparison for
efficiency with the other methods.
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1. INTRODUCTION

For many years, a variety of approaches and algorithms for performing radiation transport in
stochastic media have been examined, usually in 1D, and often on a set of problems introduced
by Adams, Larsen, and Pomraning [1] and expanded on by Brantley [2]. Recently, Larmier et al.
produced a set of benchmark results in 2D and 3D [3] based on the problems in the classic 1D
set opening the door for methods to assess accuracy in the multi-D context. Here, we compare
the accuracy of a multi-D version of CoPS with those multi-D benchmark results and published
approximate method results.

Existing 1D [1,2] and multi-D [3] benchmark results have each been computed by performing
transport on each realization of a large ensemble generated according to a statistical rule, i.e.,
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Markovian mixing. As long as it is known how to create realizations according to a desired rule,
this "brute-force method is accurate, but very expensive, often requiring thousands or more trans-
port calculations.

One of the earliest and most widely used approximate methods is the "atomic mix" (AM) method
in which the materials in the stochastic mixture are "mixed at the atomic lever to form one ho-
mogenized material on which transport is performed. This method is straightforward to setup even
with existing codes. It tends to lack accuracy, however, with the exception of a few problems,
especially those involving finely-mixed, highly-scattering media. Results for the AM approach are
found in publications such as Refs. [2,3] (1D) and Refs. [3,4] (multi-D).

Another widely circulated approximate method is the Levermore-Pomraning (LP) closure and
derivatives. This closure is a way to solve the stochastic transport equation deterministically [1].
Shortly after its development, Chord Length Sampling (CLS)—in which a particle streams within
one material for up to the length of a sampled chord before resampling which material it is in—was
shown to be the Monte Carlo equivalent of the LP closure [2,5]. Memory-enhanced versions of
CLS, "Algorithm B" and "Algorithm C," were proposed in which one or more local chords are
"remembered," yielding successively more accurate transport results [5]. Following the recent
publication of multi-D benchmark values, multi-D transport results for CLS [4,6] and an extension
of Algorithm B to multi-D called the Local Realization Preserving method (LRP) have been pub-
lished [4]. Chord Length Sampling showed significant improvements in accuracy on this bench-
mark set over the atomic mix approach, and LRP showed meaningful improvements in accuracy
over CLS.

Larmier et al., recently created and published benchmark results for an approximate method: Pois-
son Box Sampling (PBS) [7]. In Ref. [8], they observed that Box-Poisson mixing—in which planes
are sampled according to Markovian mixing in each of the Cartesian directions leaving a series
of parallelepiped tessellations in which the materials are sampled according to their abundance—
yielded very similar transport results to Poisson (Markovian) mixing. They then reasoned that
sampling boxes, instead of chords, on-the-fly would inherently provide some memory while lever-
aging the similarity in performance between Poisson and Box-Poisson tessellations. In PBS-1 they
sample a "box" at a time on-the-fly and remember it until the particle leaves the box; in PBS-2
they also remember the most recent box the particle left. By retaining some local memory, PBS-1
is analogous to Algorithm B (LRP), and by retaining additional local memory, PBS-2 is analogous
to Algorithm C [7]. PBS-1 was shown to be generally more accurate for Markovian mixing than
CLS, and PBS-2 results generally improved on PBS-1 results.

We recently proposed a new approximate method, Conditional Point Sampling (CoPS) [9], in
which material is defined at sampled points in the domain with full memory until at least one
particle history is complete. Streaming is performed using Woodcock tracking, enabling particles
to stream without full definition of what they are streaming through. The material type must be
defined at Woodcock-tracking pseudo-collision sites. The material type is sampled conditionally
on the material designations that have already been made. In Ref. [9], we derived two conditional
probability functions in 1D for defining the probability to be sampled against when sampling the
material at a new point based on the point-wise material designations already sampled. The first
conditional probability function produced reflectance results roughly as accurate as LRP, and trans-
mittance results generally more accurate than Algorithm C. We believe that the second is errorless



in the special case of 1D, Markovian-mixed media and showed numerical results to support this
belief. In a companion paper to this one [10], we examine use of a new "Embedded Variance De-
convolutioe method [11] with CoPS to enable CoPS to compute not only mean transport results,
but the variance caused by the random mixing of the material. In this paper, we examine the accu-
racy of CoPS in multi-D using recently published benchmark values, compare accuracy with the
other approximate methods introduced above, and examine accuracy and efficiency as a function
of user-input options.

2. CONDITONAL POINT SAMPLING

CoPS is based on the fact that, when using Woodcock particle tracking [12], it is not necessary to
know the exact location of all materials in the domain and the idea that realizations can be sampled
on-the-fly in an as-needed basis. Woodcock tracking only requires that material in the domain be
specified at pseudo-collision locations: in CoPS we make on-the-fly, point-wise material assign-
ments at these pseudo-collision sites. New material assignments are sampled according to material
probabilities: when no other points have been defined these probabilities are simply the material
abundances, but when at least one point-wise material assignment has been made, new points are
sampled conditionally on previously-made material assignments. In this way, CoPS successively
"reveals" a realization, never fully defining it, but defining enough to effect transport, including
the ability to take collision tallies at all pseudo-collision sites. In theory, for any type of mixing
and any combination of previously defined points, there is a correct conditional probability func-
tion from which to sample new material assignments yielding an errorless algorithm; in practice,
the true conditional probability function will usually require approximation introducing some bias
error. The authors have demonstrated use of two different conditional probability functions in 1D,
Markovian-mixed media [9]: the first involves an approximation and yields some bias error and the
second we believe to be errorless yielding no bias error. Here, we expand the "pseudo-interface"
approach to approximating the true conditional probability function used in Ref. [9] beyond 1D to
multi-D.

3. A MULTI-D PSEUDO-INTERFACE-BASED CONDITIONAL PROBABILITY
FUNCTION

Media that has Markovian mixing can be generated by sampling a number of (d — 1)-dimensional
hyperplanes of random orientation and randomly filling the resulting cells with materials according
to the material abundances [3]. The material abundances can also be called the unconditional
material probabilities:

Ac, A,6
7(0) = Ac, + A,3 ; 70) = Ac, + A,(3' 

(1)

where Ac, and Ai3 are the average chord lengths of materials a and ,3. A classic paper on Markovian
mixing [13] shows that the number of hyperplanes crossed between two randomly selected points
is Poisson-distributed. Hyperplanes have been called "pseudo-interfaces" in the 1D setting [14].
The frequency of sampling no pseudo-interfaces (k = 0) between two points distance r apart is
thus

f (k = 0, r) = exp { 
Ac 1 
r , (2)



where Ac is the correlation length of the random mixing:

A,Ao
AC = 

A, + Ao 
. (3)

In previous work on CoPS [9], we used the Poisson frequency of pseudo-interfaces to derive two
conditional probability functions in 1D.

Here, we expand the pseudo-interface derivation of (in general) approximate conditional probabil-
ity functions [9] to multi-D. Firstly, we assume that previously defined points nearest to a new point
most highly affect the conditional probability at the new point. Secondly, we recognize that two
previously defined points within a small solid angle relative to a new point will tend to either hold
similar information informing the conditional probabilities or that one will "shielr the contribu-
tion of the other. Based on these guiding principles, we devise a scheme to select a limited-sized
subset of all defined points which highly affect the true conditional probability for a new point and
govern our approximation of the true conditional probability. Thirdly, we assume that the selected
"governing points" have been chosen sufficiently far apart from one another in solid angle such that
their contributions to the conditional probability at the new point can be treated as independent of
one another. In other words, we do not account for the probability of a single pseudo-interface
hyperplane existing between the new point and more than one governing point. In the following
two subsections, we discuss the proposed scheme for selecting governing points and the proposed
method for estimating the conditional probability based on the selected governing points.

3.1. Selection of governing points

We select governing points by testing each defined point beginning with the point closest to the new
point. A point under consideration to be a governing point-a "candidate poinC-can be rejected
from inclusion as a governing point if it is close to or "shielded by" an already selected governing
point. The search for more governing points is terminated either when a certain number of gov-
erning points have been chosen or when all points within a prescribed distance from the new point
have been tested. Three user input values guide the selection process: the exclusion multiplier Me,
maximum distance multiplier Md, and maximum number of governing points Nmax.

Associated with each governing point is a solid angle in which any candidate point is rejected.
The size of this solid angle is determined by the correlation length of the material of the governing
point and a user-defined parameter, the exclusion multiplier (Me). We label the distance from the
new point to the governing point as having length r. A line is drawn perpendicular to the line
connecting the new point and governing point of material type a protruding from the governing
point the distance of Ac,M6. A third line is drawn from the end of this one back to the new point
forming a right triangle for which two of the sides (r, Ac, MC) and one of the angles (7/2) is known.
The Law of Sines is then used to solve for the exclusion angle Og associated with that governing
point with respect to the new point:

8 = sin-1 (  AaMe  ) .g
,VAiM + r2

(4)

Candidate points are tested for angle-based exclusion by testing whether they are within the exclu-
sion angle of any governing point. The distance between the new point and governing point is once



again r, the distance between the new point and candidate point is and the distance between the
governing point and candidate point is d. The Law of Cosines is used to solve for the angle 0,
between the governing point and candidate point with respect to the new point:

(
2rr'

r2 ri2 d2
= cos-1   (5)

The candidate point is rejected if 0, is smaller than Og for any governing point.

The selection of governing points is terminated in one of three ways: all existing points have
been tested for inclusion, Nmax points have been selected, or all points within the distance A,Md
have been tested. Both the exclusion multiplier Me and maximum distance multiplier Md are
multipliers to length scales specific to a type of mixing in an attempt to enable the same value
of these parameters to seamlessly apply to different stochastic mixing problems in a meaningful
way. A sketch of this selection process is provided in Figure 1 in which two points are chosen as
governing points (one of each material type), one point is excluded by angle, and six points are
excluded by distance.

A1

A2

A,

Figure 1: Diagram demonstrating angle- and distance-based exclusion.

3.2. Estimation of conditional probability

Once the governing points have been chosen, they are used to approximate the conditional proba-
bility function. We define a probability space comprised of 2Npt discrete outcomes including each
permutation of there being or not being at least one pseudo-interface between the new point and
each of Npt governing points. We define A and B as the sets of permutations for which there are
no pseudo-interfaces between the new point and at least one governing point of material type a or
i(3, respectively. The entire space, illustrated in Figure 2, is then uniquely described by the union of
the following four non-overlapping scenarios: the new point must be material a (A\B), the new
point must be material i3 (B\A), the new point must be sampled based on material abundances



((A U B)c = O), and the invalid scenario in which there is no pseudo-interface between the new
point and at least one point of material a and at least one point of material /3 (A n B).

A

Figure 2: Diagram of four-scenario probability space.

Denoting the distance from the new point to the governing points as = {ri, r2, • • • , riv,„} and
the material types of the governing points as = {mi, m2, • • • , mNpt}, the probability of the
compliments of sets A and B can be computed as the evaluation of two pi-products:

Npt

P(Ac) = 11 ( 1 — f k = 0, r = rn))
n=1;mn=cy

(6a)

t

P(Bc) = (1— f(k = 13, r = rn)) (6b)

n=1;mn=13

The probabilities of each of the valid scenarios are then solved as a function of these two quantities:

P(0) = P((A U B)c) = P(Ac)P(Bc) (7a)

P(A\B) = P(Bc) — P(0) = P(0) (p 
(1
An 1) (7b)

P(B\A) = (Ac) — P(0) = P(0) (p(Bc) 1) (7c)

The probabilities of knowing you have material a, knowing that you have material or that
you must sample according to material abundance—P„ p3, or Pind, respectively—are computed by
normalizing according to the probability of having a valid scenario:

P(A\B) 

Pa P(A\B) + P(B\A) + P(0)

P(B\A) 

P(A\B) + P(B\A) + P(0)

P(0)
P(A\B) + P(B\A) + P(0)

(8a)

(8b)

(8c)



Finally, the probabilities of sampling material a or are computed as the sum of the probability
of knowing you have that material and the probability that you both need to sample according to
material abundance and sample that material:

7r(alfC TA) = Pa + Piner(a) (9a)

()WC TA) = PO + Pinc170) (9b)

Thus, the probability of sampling either material is computed based on a set of governing points
and our independence assumption by tallying P(Ac) and P(Bc) on one for-loop and a few arith-
metic evaluations.

4. RESULTS

We compute the accuracy of CoPS in 3D using the recently published benchmark set [3]. The prob-
lems in this benchmark set involve a geometry of length 10.0 in each direction with an isotropic
source and vacuum leakage conditions on the "reflective boundary," vacuum leakage conditions on
the opposite "transmissive boundary," and reflecting conditions on the other four. Particles either
absorb or scatter isotropically. Two materials are mixed according to Markovian mixing. Three
quantities are computed: reflectance, transmittance, and internal flux computed over the whole
domain. The nine problems in the benchmark set are described using the unique permutations
of case number and case letter outlined in Table 1. We first compare the accuracy of CoPS over
the benchmark set with published 3D approximate methods and then examine the accuracy and
runtime of CoPS on this problem set as a function of user-input variables.

Table 1: Benchmark Set Parameters

Case Number Et,o Et,1 Ao A1 Case Letter co c1

1 10/99 100/11 99/100 11/100 a 0.0 1.0
2 10/99 100/11 99/10 11/10 b 1.0 0.0
3 2/101 200/101 101/20 101/20 c 0.9 0.9

4.1. Comparison of accuracy with published approximate methods

We produce the following CoPS results using a maximum of either one governing point (a two-
point relationship) and call this CoPS2 or three governing points (a four-point relationship) and call
this CoPS4. For both CoPS2 and CoPS4 results, 105 histories were used. Benchmark results from
Ref. [3] as well as CoPS2 and CoPS4 results are listed in Table 2. In parentheses are uncertainties
on the last digit. Both CoPS2 and CoPS4 produce values close to the benchmark values. CoPS4
is generally more accurate than CoPS2, as expected. The relative error of the most long-standing
approximate methods in the literature and CoPS4 are plotted in Figure 3. This figure visually
demonstrates that in most cases CLS is considerably more accurate than AM and that CoPS4 is
generally more accurate than CLS.



Table 2: Selected Transport Results

Case
Bench [3]

Reflectance
CoPS2 CoPS4

Transmittance
Bench [3] CoPS2 CoPS4

Flux
Bench [3] CoPS2 CoPS4

a 0.4065(4)0.408(2) 0406(2) 0.0162(1) 0.0167(4)0.0164(4)6.318(8) 6.33(2) 6.31(2)
1 b 0.0376(2)0.0376(6)0.0358(6)0.00085(3)0.0009(1)0.0009(1)1.920(3) 1.921(6)1.915(6)

c 0.4036(4)0.407(2) 0.409(2) 0.0164(1) 0.0175(4)0.0175(4)6.2960(8)6.36(2) 6.36(2)

a 0.223(2) 0.217(1) 0.227(1) 0.0935(8) 0.0995(9)0.0941(9)7.55(2) 7.47(2) 7.41(2)
2 b 0.161(2) 0.143(1) 0.152(1) 0.119(2) 0.111(1) 0.113(1) 7.76(7) 7.32(2) 7.46(2)

c 0.3438(6)0.314(1) 0.347(2) 0.1650(2) 0.155(1) 0.162(1) 10.76(6) 10.08(3)10.74(6)

a 0.670(4) 0.654(2) 0.666(1) 0.169(3) 0.185(1) 0.170(1) 16.35(8) 15.96(6)15.71(6)
3 b 0.0167(6)0.0129(4)0.0143(4)0.045(3) 0.0416(6)0.0410(6)3.49(8) 3.26(1) 3.31(1)

c 0.395(1) 0.374(2) 0.398(2) 0.085(3) 0.0817(9)0.0852(8)7.9(1) 7.53(3) 7.82(3)

We compare CoPS accuracy with that of the other approximate methods that have published multi-
D results in Table 3 using the root mean squared (RMS) relative error, the mean absolute relative
error, and the maximum absolute relative error across the benchmark set as in Ref. [4]. The atomic
mix (AM) results shown here were generated by homogenizing the medium and running CoPS (the
results agree within statistics to other published multi-D AM results [3,4]). We use CLS results
from Ref. [6] instead of Ref. [4] since the former provides results for internal flux but note that
results from the two agree within statistics. Likewise, LRP results are only given in Ref. [4] and
do not contain internal flux results such that we cannot compute error metrics for this quantity.

We first note that each approximate method compared here outperforms AM by a wide margin.
We secondly note that each higher-fidelity version of an approximate method shows improvement
over its lower-fidelity counterpart in accuracy in nearly every metric (i.e., LRP improves on CLS,
PBS-2 improves on PBS-1, and CoPS4 improves on CoPS2). PBS-1 and CoPS2 each outperform
CLS; PBS-1 is the most accurate of these three in reflectance and flux while CoPS2 is the most
accurate in transmittance. LRP and CoPS4 show comparable accuracy in reflectance while PBS-2
is the most accurate of the methods compared here. LRP and PBS-2 show comparable accuracy in
transmittance while CoPS4 is the most accurate of the methods compared here. PBS-2 is somewhat
more accurate than CoPS4 for internal flux. We note that the statistical uncertainties on our CoPS
results are of a similar order as the statistical uncertainty on the benchmark values such that running
CoPS with more histories may somewhat decrease the value of the error metrics, but significantly
better resolution for the error metrics would require better-resolved benchmark values.

4.2. Accuracy and runtime as a function of user-input variables

The previous results in this paper were generated using a maximum distance multiplier of Md =
oo, an exclusion multiplier of Me = 1.0, and a maximum number of governing points of either
Nina, = 1 or Nmax = 3. Table 4 and Figure 4 present error and runtime results numerically
generated by successively varying each of these parameters.
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Figure 3: Relative error for selected methods on benchmark problems.
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Root mean squared error across the benchmark set decreases as the maximum distance multiplier
increases until it roughly plateaus. We think the plateau is caused by the level of uncertainty in the
benchmarking and expect that the statistically resolved error would likely decrease asymptotically
towards a finite error value. Runtime increases monotonically as the maximum distance multiplier
increases. Based on this data, we choose Md = 3 for subsequent numerical studies since this value
minimizes runtime without measurably increasing error.

The behavior of CoPS as a function of the exclusion multipier is somewhat more complicated.
Firstly, we compare having no angle-based exclusion (M, = 0.0) with a small exclusion angle
(M, = 0.001). The error and runtime values for M, = 0.0 are plotted at M, = 0.0005 in Figure 4
so that they can be plotted for visual comparison on a log plot. This comparison shows that even a
small amount of angle-based exclusion significantly improves accuracy. Secondly, we characterize
accuracy and runtime as a function of non-zero exclusion angles. Our data suggests that the most
interesting behavior likely occurs between Me = 0.001 and Me = 0.25, a span over which the
error significantly diminishes. We think that error is largely swamped by statistical uncertainty
beyond Me = 0.25, though there may be a true increase in error for larger exclusion angles. With
the exception of M, = 2.0, runtime appears to decreases at first steeply, then gradually with larger
M6—the nonconformity of the M, = 2.0 data point may be caused by cpu runtime fluctuations.
Based on these results, we chose M, = 0.5 for the next numerical study.

Finally, we compute error and runtime as a function of the maximum number of governing points.
Error decreases sharply, then plateaus. The reflectance error appears to reach a local minimum
around Nmax = 3, then increase. This behavior may represent lack of statistical resolution or be
a real effect perhaps caused by having chosen a relatively small M6, which may affect reflectance
more than the other quantities. Runtime monotonically increases as the maximum number of
points increases. After a steep initial increase the runtime appears to asymptotically approach a
maximum value. Non-negligible distance- and angle-based exclusion tends to limit the number of
governing points chosen even when Nmax is large and may cause the runtime plateauing.



Table 3: Transport Results Error Metrics

Leakage Error AM CLS [6] LRP [4] PBS-1 [7] PBS-2 [7] CoPS2 CoPS4

RMS ER 1.900 0.380 0.160 0.221 0.087 0.277 0.164
Refl. Mean IER 1 0.517 0.098 0.042 0.052 0.021 0.061 0.033

Max IER 1 1.232 0.254 0.096 0.163 0.056 0.228 0.144

RMS ER 2.678 0.290 0.235 0.275 0.247 0.197 0.134
Trans. Mean 1 ER 1 0.881 0.084 0.073 0.066 0.060 0.063 0.033

Max IER 1 1.000 0.181 0.122 0.206 0.209 0.097 0.088

RMS ER 1.399 0.163 N/A 0.095 0.044 0.119 0.078
Flux Mean IER 1 0.394 0.039 N/A 0.022 0.010 0.031 0.019

Max IER 1 0.861 0.107 N/A 0.058 0.032 0.065 0.050

5. CONCLUSIONS AND FUTURE WORK

An extension of Conditional Point Sampling (CoPS) to multi-D for Markovian-mixed media is
presented and transport results are compared with published benchmark and approximate method
results. The ability to improve accuracy by using a more accurate conditional probability function
for sampling new points is demonstrated by improving accuracy when using more governing points
in the conditional probability function. A basic version of CoPS (CoPS2) performs somewhat
better than Chord Length Sampling (CLS) and roughly as accurately as the basic version of Poisson
Box Sampling (PBS-1). An improved version of CoPS (CoPS4) performs roughly as well as the
Local Realization Preserving (LRP) method and an improved version of PBS (PBS-2). CoPS4 is
the most accurate of the examined methods for transmittance while PBS-2 is the most accurate for
reflectance and internal flux. It is not known how LRP compares to the other methods for internal
flux due to lack of data in the literature. Additionally, several numerical studies are performed
examining the accuracy and runtime of CoPS as a function of three user-input parameters.

Future work may include resolving benchmark and/or CoPS results to have less uncertainty. Sim-
ilar numerical results could be generated for 2D problems. Different conditional probability func-
tions, i.e., geared for Poisson-Box mixing or using an approach other than the pseudo-interface
approach, could be developed for application to different types of material mixing or for improved
accuracy. The Embedded Variance Deconvolution approach demonstrated with CoPS in 1D [10]
could be implemented in multi-D to yield not only mean but variance of output quantities. Other
methods could be implemented in a similar code framework to enable valid runtime comparisons
between CoPS and the other methods. The authors would like to investigate use of biased Wood-
cock tracking [12] for possible improvements in efficiency and/or accuracy.
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Table 4: Error and Runtime as a Function of User Variables

Maximum Distance Multiplier, Md (Me = 1.0 N max = 3)

Md 0.5 1.0 2.0 3.0 3.75 4.5 6.0 17.3

Refl. RMS ER 0.464 0.243 0.148 0.109 0.167 0.156 0.159 0.164
Trans. RIVIS ER 1.284 0.665 0.219 0.147 0.138 0.157 0.113 0.134
Flux. RMS ER 0.343 0.149 0.079 0.078 0.073 0.073 0.069 0.078

Runtime [min] 246 306 401 479 526 574 633 813

Exclusion Multiplier, Me (Md = 3.0, Nmax = 3)

Me 0.0 0.001 0.25 0.5 0.75 1.0 2.0 1E+9

Refl. RMS ER 2.769 0.305 0.134 0.096 0.133 0.141 0.131 0.187
Trans. RMS ER 15.22 0.628 0.186 0.138 0.217 0.117 0.187 0.150
Flux. RMS ER 2.049 0.855 0.041 0.068 0.066 0.081 0.072 0.084

Runtime [min] 1011 1579 426 419 416 390 477 381

Maximum Number of Points, Nmax (Md = 3.0, Me = 0.5)

Nmax 0 1 2 3 4 5

Refl. RMS ER 1.898 0.273 0.139 0.096 0.113 0.186
Trans. RMS ER 2.691 0.167 0.109 0.138 0.144 0.147
Flux. RMS ER 1.398 0.125 0.070 0.068 0.070 0.066

Runtime [min] 45 136 360 392 396 403

International Inc., for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA0003525.
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