This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government
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Who am I?

o B.S., M.S. and Ph.D in Engineering Mechanics at
University of Wisconsin

o Focused on computational methods in structural
dynamics

o “Nonlinear Modal Substructuring of Geometrically
Nonlinear Finite Element Models”

O Joined Sandia in 2015 as Technical Staff
o Component Science & Mechanics

o Research and application work in computational
structural dynamics

o Exploring new nonlinear physics

Keywords:

Structural dynamics; reduced order modeling;
nonlinear dynamics and vibrations; test-analysis
correlation; interface mechanics

Exploratory design of future
reusable, long duration
cruise high-speed aircraft
from AFRL-RQ-WP-TR-2012-
0280

Panel 1, Aft Fuselage Area I
Panel 2, Mid Fuselage Fuel Tank

3.3'tall x 3.0 wide
5.2'tall x 3.0’ wide

Panel 3, Upper Wing Skin

Vibration sensitive electronics
potted in foam or polymer to
mitigate damaging shock and
vibrations
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3 I Structural dynamic considerations with joints
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4 I Motivation and Existing Challenges -

> Automotive, aerospace, civil, etc..

Joints introduce mechanical interfaces, contributing as sources of
nonlinearity in vibratory response

° Frictional slip: micro- and macro-slip

Various industries rely on joining technologies to assemble structural systems |
° Variable normal pressure distributions |

Frictional contact presents various challenges

> Modeling: simulation cost, stability and convergence, model fidelity and
uncertainty

> Experiments: measuring kinematics, repeatability, nonlinear dynamics




5 I What global response metrics should be preserved!?
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6 | How to efficiently develop models with mechanical interfaces!?

Interface Reduction
(Flexible Interfaces)

Whole Joint Modeling

(Rigid Interfaces)

Cylinder

Spider Element

- oint Model

Plate

“Goal: Estimate/calibrate the joint parameters in the
whole joint reduced order models to match response
from high-fidelity models and/or experiments

5/7/2019

Interface DOF

reduced by modal methods

Interior DOF
reduced by component mode
synthesis (CMS) methods

“Goal: keep full kinematics and nonlinear elements,
and apply interface reduction




7 I Overview of Structural Dynamics of Mechanical Joints

Nonlinear reduced order models with mechanical interfaces

> Whole joint modeling

o Interface reduction

Experimental methods to measure nonlinear frequency and damping characteristics

Comparison of various dissipation models to model jointed structures



g8 I Objectives of whole joint modeling R&D

Contact areas in high fidelity finite element models simplified by “spidering” surface to a single node
and modeling joint forces as a 1D constitutive law

Global optimization to calibrate whole joint parameters to match global response

RBAR Spiders

4-parameter /

Iwan element




9 I Quasi-static Modal Analysis

Quasi-static Modal Analysis of Estimate modal amplitude dependent natural frequencies, w, (a),
Full-order Model and damping ratios, {;- (), of high-fidelity model and reduced
models with whole joints [1]

Nonlinear Preload Analysis F. Initial Loading
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[1] M. S. Allen, R. M. Lacayo, and M. R. W. Brake, "Quasi-static Modal Analysis based on Implicit
Condensation for Structures with Nonlinear Joints," presented at the ISMA2016 - International Conference
on Noise and Vibration Engineering, Leuven, Belgium, 2016.




10 | Whole joint calibration via multi-objective optimization [I]
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[1] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, "DEAP: Evolutionary algorithms made easy," Journal of Machine Learning Research, vol. 13, pp. 2171-2175, 2012.



11 I C-Beam Benchmark Example




12 I Multi-mode whole joint model
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13 | Overview of Structural Dynamics of Mechanical Joints

Nonlinear reduced order models with mechanical interfaces
° Whole joint modeling

o Interface reduction

Experimental methods to measure nonlinear frequency and damping characteristics

Comparison of various dissipation models to model jointed structures



14 I What if the joint is flexible!?
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15 | Interface reduction applied to Hurty/Craig-Bampton (HCB) substructures -

HCB reduced model dominated by potentially thousands FE

of r-set DOF w

¥

HCB

HCB HCBT . ..
Ii M~ M, d; A 0 0 |(q; 0
e wee w0 e o) | NN
C u HCB HcB | (U
G O R L
System Level Local Level Hybrid-Level
¥ v
Research challenge: how can we further reduce these S-CC H-CC

equations?

Explored the extension of interface reduction
techniques [1] to problems involving nonlinear EC ItCC wC tJCC UWCJ'L,CC

contact [2,3] u“g | “ D Y.NJQ

[1] Krattiger, D. et al. “Interface reduction for Hurty/Craig-Bampton substructured models: Review and improvements,” Mechanical Systems and Signal Processing, 114, pp 579-603, 2019.

[2] Kuether RJ, Coffin PB, Brink AR “On Hurty/Craig-Bampton Substructuring With Interface Reduction on Contacting Surfaces,” ASME International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Volume 8: 29th Conference on Mechanical Vibration and Noise.

[3] Hughes, P.J. et al. “Interface Reduction on Hurty/Craig-Bampton Substructures with Frictionless Contact,” 2018 International Modal Analysis Conference (IMAC) XXXVI, Orlando, FL, 2018.




16 I System-level characteristic constraint modes

Solve the quasi-static version of the HCB model for preloaded equilibrium

Al 0 0 ] qi 0 0
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Apply a secondary reduction about the preloaded equilibrium such that
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where the tangent S-CC modes and static constraint modes computed about preloaded state
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17 | Enhance basis with trial vector derivatives L

Using the S-CC modes from the initial reduction on the interface

di
V= {“r} = Vpre +

I 0 0 qdi
0 @SCC wpscee|lq, =Vpre_|_TSCCeW
u
p

0 0 I Up

Take Taylor series expansion around preloaded configuration to get modal derivatives

Tiow) = T;

oiven modal amplitude of response

Take Taylor series expansion around preloaded configuration to get modal derivatives
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18 I Time-domain simulations due to impulse load

Impulse load A = 2000 N
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19 | Time-domain simulations due to impulse load

Impulse load A = 2000 N

*Full interface ~ 90 minutes
** IR ROMs - 2 minutes
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20 I Time-domain simulations due to impulse load

Impulse load A = 2000 N
HCB-SCCe-TVD ROM

272 DOF

2.0 min

Displacement Magnitude, inch
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21 I Overview of Structural Dynamics of Mechanical Joints

Nonlinear reduced order models with mechanical interfaces
> Whole joint modeling

o Interface reduction

Experimental methods to measure nonlinear frequency and damping characteristics

Comparison of various dissipation models to model jointed structures
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Experimental procedure to nonlinear system identification
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23 | Measured frequency and damping data on cylinder-plate-beam (NOMAD) | |
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24 I Overview of Structural Dynamics of Mechanical Joints

Nonlinear reduced order models with mechanical interfaces
> Whole joint modeling

o Interface reduction

Experimental methods to measure nonlinear frequency and damping characteristics

Comparison of various dissipation models to model jointed structures




25 | Motivations

Predicting transfer of energy from a flowfield to structures is challenging, and is often based on

semi-empirical models and simple modal testing, with large uncertainties

Driver Section Fast Valve Driven Section Test Section

Shock tube creates

. . Loads a susceptible Evaluate response of
impulsive start and . . gy
.. jointed structure structural joint
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. models
shedding loads Thin Shell s
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Primary goal: measure the input loading and output structural response to test the predictivity

of constitutive models on jointed structures under real fluid dynamic loading.




26 I Diagnostic Approach

High-Speed High-Speed High-Speed
Tomographic-PIV? PSP DIC

/ Flow Direction
e

t=1.00 msec

VD[]

Source Input Output
* Measure the flow- * Obtain the pressure field on * Measure the output
field responsible for the body surface responsible using DIC. Directly
pressure loading in a for the loading. This is used compare simulations to
time-resolved fashion directly as the input in these measurements.
over a volume simulations.

This work: perform high-speed PSP and DIC simultaneously

[1] Lynch and Wagner (2018) Time-resolved pulse-burst tomographic PIV of impulsively-started cylinder wakes in a shock tube. AIAA 2018-2038.
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Comparison of friction models for jointed structure in shock tube
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28 I Concluding remarks

Joints in structural dynamics realize new challenges that make modeling and experiments challenging

° Linear theory no longer valid
o Excessive simulation times for models

> Issues with convergence, repeatability, etc..

Reduced order models provide a unique opportunity for model calibration
> System identification based on nonlinear frequency and damping

o Ability to quickly sample the model and understand joint behavior

Many options available for modeling friction: which one is correct?
> Small length scales beyond our macro-scale models

> Coulomb most widely available/used



29 I Research collaboration opportunities for students and professors

oHosted by Sandia National Laboratories and University of New
Mexico

oCollaborative opportunity to work on research in topic areas across
nonlinear mechanics and dynamics

o7 week program held in Albuquerque, New Mexico; open to
graduate and highly qualified undergraduate level students

Time: 0.009863

nomad@sandia.gov

For more information, please visit:
http://www.sandia.gov/careers/students postdocs/internships/institutes/nomad.html




30 I Any questions!?

Special thanks to my collaborators:

David Najera (ATA), Patrick Hughes (UCSD), Aabhas Singh (UW-Madison), Dan Roettgen (SNL),
Ben Pacini (SNL), Matt Allen (UW-Madison), Ben Moldenhauer (UW-Madison), Justin Wagner
(SNL), Elizabeth Jones (SNL), Kyle Lynch (SNL), Dane Quinn (Akron), Allen Mathis (Akron)

Contact information: rikueth@sandia.gcov
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