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3 Challenges of microfabrication

• Microfabrication enables scalable traps
• Junctions and transitions
• Integration of passive and active components
• Integration of optics

• Repeatable and reproducible properties
• Fabrication of identical devices
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• Small distance to electrodes
• Higher anomalous heating

• Nearby dielectrics

41111111111111111111111 scattered laser light
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• Possibly charging of the trap due to

ifteere, ‘rdr"
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• Small features

We will demonstrate the state of the art in trap fabrication • Sensitive to dust

and demonstrate that microfabricated surface traps can be • Higher anharmonic contributions to trap

used for high fidelity quantumigratio s potential
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5 Trap fabrication capabilities

• Based on CEMOS back of line
• Crucial capabilities outside CMOS integrated
• Up to 6-level metallization

• Planarized
• Islanded electrodes
• Reduced rf capacitance
• Any electrode geometry can be realized

• Removed dielectric (better shielding)
• Integrated trench capacitors for rf shunting
• Loading holes and slots
• Release singulation (e.g. bowtie shapes)

S4800 1.0kV 7.7rme x4.00k SE(M) 2/28/2012 07.38 10 dutn
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Bottom

Electrode
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det HV curr HFW dwell tilt
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Ring Trap
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6 I High Optical Access trap HOA-2

): Loading

• Junction

Q antum Shuttling

Transition

• Excellent optical access rivaling 3-D
• 2TE for imaging
• NA=0.2 through slot
• NA=0.12 skimming surface

• High trap frequencies (characteristic distance 140p.m)
• Full control over principal axes orientation
• Junctions

• Transitions between slotted and above-surface trap regions

1



7 Ytterbium trap characteristics

Trap frequencies:
• radial 2 - 5 MHz
• rf frequency 50 MHz
• stable for long ion chains

Heating rates

30 quanta/s

125 quanta/s

Ytterbium, 2.7 MHz

i. -(c-Ar

Trapping time:
• >100 h observed

(while running measurements)
• >5 min without cooling

(E)



Calculating voltage solutions

• Boundary element simulation for surface electrode geometry

7-1

0,(/)  \ • Symmetric curvature tensor
OxOx OxOy Oxaz • 6 degrees of freedom

00 
0y0x Oy Oz •• Determines trap frequencies and principal axes rotations

00 00 00 , • Traceless for static fields
/OzOx 

•
OzOy OzOz  • Trace is generated by rf pseudopotential

• Calculate voltage solutions to independently control curvature tensor elements and fields at ion locations
• Use pseudo-inverse to get well-defined solution using nearby electrodes with minimal voltages
• Generate solution for any trap configuration from these basis-solutions

Advantages of parametric trapping solutions:
• Primitives are in terms of curvature tensor elements and can be applied

at any location in the trap.
• Shuttling primitives can be easily combined

Example:
• Rotating ion crystal while translating through the trap

4 I.



9 Principal axes rotation
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The simulations accurately describe the fields and curvatures generated by the trap

• Do we understand the
trapping fields?

• Principal axes rotation
realized as in
simulation

• No change in trap
frequencies

300



10 I Rotation of ion chains

To be characterized as function of swapping
time
• Swapping fidelity
• Accumulated motion



I11 Measuring swap fidelity
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1 2 Separation and merging of ions
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Thunderbird HOA-2.0 HOA-2.1

13 RF dissipation

Cp

Rs II

RP

1
Ps P'-J- —

2 
R,U2w2C2

=  
w U2

PI) 2 Rp

0 min.

10 min.

20 min.

30 min.

For 100 V amplitude at 100 MHz:

RF Voltage at trap (-280 V)

Trap Temp Cp Rs Rp Ps Pp

HOA-2 300 K 7.6 pF 1.2 Q 1.2 MQ 140 mW 4.2 mW
4 K 0.5 Q 60 mW

HOA-2.1 300 K 7.6 pF 0.9 Q 1.6 MQ 100 mW 3.1 rnW
4 K 0.5 Q 60 mW

60

50

40

30

Thunderbird 300 K 2.4 pF 0.6 Q 1.5 MQ 6.7 mW 3.3 mW



14 Sandia Traps

Y-junction traps

NONE SEI 5.0kV X33 100m7 WD 13.0mm

Ring trap:

Stylus trap

s4800 5.0kV 2.6mm x220 SE(M) 5/23/2014 11'1

Circulator trap
•

111

111

• •

11111111

0111Efi.14`"'
S4800 1 OkV 15 3mrn x30 SE(M) 2/29/2012 14 g5  1.00mm

1111111111M1M1

•q111111111 11111

Microwave tra

High Optical Access (H0A) trap

S3400 10.0kV 30.1mm x19 E 3/30/2015

Switchable RF
junction trap

EPICS trap



Phoenix trap fabrication
15 Original plans for Phoenix

High optical access
topology: bow-tie
with 1.2 mm isthmus

Thru-chip slotted
quanturrifregion

11. 1111.111M

Surface trap ion
loading region

Trap RF electrode
capacitance (length)
minimized

On-board RF

shunt capacitors

Capacitive pick-up
for RF voltage
measurement

Temperature sensor and
resistive heater wires

Wirebond I/0
blocks at ends



Phoenix trap fabrication
16 Trap features

I I 1 i i i i i i

I I I 1 i 1 1

VW

----7Ell"

Transition 

• 9 degrees of

freedom

• Low spatial

frequencies

Quantum region 

• Segmentation of 22 inner

electrode pairs and 11

outer pairs for better

control of ion chains and

spatial re-ordering of ions
• 22x70lim = 1540p.m long

• lon height 70p.m

Loading region 

• 5 electrode pairs

• Loading slot 180um x 3um

111111,1111 
IIIIII_III1 



Phoenix trap
17 Transition characterization
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• Transition between slotted and above surface parts of trap is optimized to minimize
variations in the trace of the curvature tensor

• RF pseudopotential hump is about 0.5meV for a 2.5MHz radial trap frequency
• lon height above slot and above surface differs to keep trap frequencies (trace of

curvature tensor) constant



Rf-dissipation in traps
electrical characterization

Rs

C P

RP

Rs : Series resistance (lead resistance)

Rp (rf) parallel resistance (dielectric absorption)

C capa,citance

For 100 V amplitude at 100 MHz:

Trap Temp Cp Rs Rp PS Pp
Phoenix-0 (measurement) 300 K 4 pF 0.4 SZ

Phoneix-surface (calc.) 4 K 0.05 S2
5 mW
1 mW

Phoenix-slotted (calc.) 300 K 5.5 pF 0.4 S-2 9.4 mW
4 K 0.05SZ 1.4 mW

HOA-2.1 300 K 7.6 pF 0.9 Q 1.6 MQ 100 rnW 3.1 rnW
4 K 0.5 Ci 60 rnW

Thunderbird 300 K 2.4 pF 0.6 S2 1.5 MQ 6.7 naW 3.3 inW

Ps — 
1

2
R8U2 co2C?,

1 COU2
Pp 

2 tip



1 9 Custom trap package

Legacy 4 Level CPGA Packaging Assembly Simplified 2 part assembly

Ion Trap Die

CPGA  . . \ _ ') r — : - kf \

Interposer 
\

Spacer

Objectives:
• Improved rf- and ground performance
• Compatible with bowtie chip without interposer
• Simplified assembly
• Backwards compatibility with MQCO package

Properties:
• AlN for improved thermal conductivity and

reduced thermal expansion vs A1203
• Two rf connections with minimized

capacitance (3pF) and resistivity (50mOhm)
• Backwards compatible with prior HOA devices
• Metal coverage of top surface
• All metal is signal or ground (no floating metals)



Custom trap package
20 i s available

Compared to commercial off the shelf package
• Top surface mostly metal (grounded)
• Low resistance of rf and ground paths

(massively parallel vias, routing on outer layers)

,

S3400 10.0kV 37.9mm x13 SE 11/1/2018

0



21 Gate Set Tomography (GST)

Developed at Sandia by
QCVV team

• No calibration required
• Detailed debug information
• Efficiently measures

performance characterizing
fault-tolerance (diamond
norm)

• Detects non-Markovian noise

Uses structured sequences to amplify all possible errors

P a- G2- a a
Prepare

G, G2- a G2 G,-
germ germ germ germ

G,
Measure



22 GST sequences

Single qubit BB1 compensated microwave gates on 171Yb+

P G2- G2- a G2  G, G2—
•
•

Prepare germ germ germ germ Measure

Desired "target" gates:
Gi Idle (Identity)
Gx 7/2 rotation about x-axis
Gy 7/2 rotation about y-axis Gx

Gy

Fiducials: 
{} 

Germs: Gi

Gx 
Gx • Gy

Gx • Gy • Gi
Gy

Gx • Gi • Gy
Gx • Gx

Gx • Gi • Gi
Gx • Gx • Gx Gy • Gi • Gi
Gy • Gy • Gy Gx • Gx • Gi • Gy

Approximately prepare 6 points on Bloch sphere Gx • Gy • Gy • Gi

Gx • Gx • Gy • Gx • Gy • Gy

X(n/2)



23 GST: debugging microwave gates

Gate Rotn. axis Angle

GT

0.5252
-0.009
0.8506
-0.0244

0.0016997r

GN
-

-3 x 10-6
-1

-3 x 10-5 
-0.009

0.5013087r

,

-0.2474
0.0001
0.9689
-0.0001

0
'
5013667

10-2

io-3

io-4
17-Apr 2-Dec 9-Feb 2-Mar 30-Mar

Experimental run



24 I GST: debugging microwave gates

Gate Rotn. axis Angle

Gi

0.5252

-0.009
0.8506
-0.0244

0.0016997

G \
-

-3 x 10-6
-1

-3 x 10-5
-0.009

0.5013087

i

-0.2474
0.0001
0.9689
-0.0001

0.5013667

Gate Rotn. axis Angle

-0.0035

G 1
0.014

-0.9999
0
'
001769 7

0.0006

-3 x 10-5
-1

G
x 1 x 10-4

0.5000077r

0.0006
0.1104
1 x 10-5

Gy
0.9939

0.500017

0.0005

10-1

10-2

10-3

io-4
17-Apr 2-Dec 9-Feb 2-Mar 30-Mar

Experimental run



25 Context and time dependency of gates

Assumptions:
• Qubits in a box
• Pressing a button always executes the

exactly same operation
• Independent from context (gates

executed before)
• Independent from when a gate is

executed

GST uses a large (over-complete) number of
sequences.

We can look whether the assumptions are
satisfied

Ongoing work to improve and distinguish
detection of context and time dependence
of classical control



26 I GST model violation

Th&k2 values from the fits are expected to follow a X2distribution with
mean k and standard deviation \/2k
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Mi c rowave
off during
identity
gate, next
gate is
affected

wait
BB1 wait
BB1 XX

BB1 XYXY
first data  0

Constant microwave
duty cycle

1 10 100

sequence length

BB1 decoupled gates with decoupled identity have very small
non-Markovian noise

1000 10000



27 GST model violation

GxGxGyGxGyGy

Gx-GyGyGi

GxGxG i Gy

GyGiGi

GxGiGy

GxGyGi

GxGy

Gy

Gx

Gi

• - . - ..• r- - - ,
-
. ...• 

.. .--. . . ,
. -
-

-

-

-

-

1E. 32 E.  =v 256 512

L

• Checking and optimizing a system for

• Red boxes show sequences which violate
the Markovian model

• For a Markovian realization with 95%
probability there are no red boxes

• These sequences show context
dependency of gates

• X- and Y- gates behave differently if
applied after an I gate



28 I GST: Microwave results

Best results for microwave single qubit gates:

• BB1 dynamically compensated pulse sequences
• Decoupling sequence for identity gate
• Drift control for ii-time and qubit frequency

95% confidence intervals

Gate Process Infidelity 1/2 o-Norm

G/ 6.9(6) x 10-5 7.9(7) x 10-5

Gx 6.1(7) x 10-5 7.0(15) x 10-5

Gy 7.2(7) x 10-5 8.1(15) x 10-5

All gates are better than the fault tolerance threshold of 9.7 x 10-5
P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007).



29 Two-qubit gate implementation

• Molmer-Sorensen gates [1] using 355nm pulsed laser
• All two-qubit gates implemented using Walsh compensation pulses

[2] n+1
11) n

"Vertical" "Horizontal" n-1

4

3

2

1

o

Tilt COM Ti lt COM

1

\ 1
2 2 2 2 4 2 6 2 8

RamanSingleDetuning (MHz)

[1] K. Wilmer, A. Sorensen, PRL 82, 1835 (1999)
[2] D. Hayes et al. Phys. Rev. Lett. 109, 020503 (2012)

01)

n+1
00) n

n-1

00) 100) + 11)

Heating rates

tr-,,:i, 60 quanta/s

< 8 quantais



30 I GST on symmetric subspace

p V, G2--a.a11a- G2I-.

. •---, ..--,

Prepare germ germ germ

Basic gates: G/

Gxx = Gx 0 Gx

Gyy = Gy 0 Gy

GMS

Preparation Fiducials:

{}
Gxx

Gyy

GMS

GxxGMS

GyyGMS

germ

Germs:

GI

Gxx
Gyy

Gms

GIGxx
GIGyy

GIGms
G.Xx G1717

GX-X GMS

Gyr Gms

GiGiGxx
GIGIGyy

•
•

Measure

Detection Fiducials:

{}
Gxx

Gyy

Givis

GxXGAIS

GyyGms

G3xx

G717

qyGMS



31 I Two-qubit gate characterization

Gate Process infidelity 1 Diamond norm2

G/ 1.6 x 10-3 ± 1.6 x 10-3 28 x 10-3 ± 7 x 10-3

Gxx 0.4 x 10-3 ± 1.0 x 10-3 27 x 10-3 ± 5 x 10-3

Gyy 0 1 l -3 ± 0.9 X 10-3 26 x 10-3 ± 4 x 10-3

GMS 4.2 x 10-3 ± 0.6 x 10-3 38 x 10-3 ± 5 x 10-3

95% confidence intervals

Process fidelity of two-qubit Molmer-
Sorensen gate > 99.5%

The best characterized two qubit gate

By the way: It's in a scalable surface trap 0

IY IZ XY xZ

►atQIX
YZ

YY

X

Il

X

0 IY

g Q IZ
0 0 ci XY

XZ



32 QSCOUT DOE Quantum Testbed Laboratory

Testbed systems designed for open access to support scientific applications
• High-fidelity operations #gates a (#qubits)2
• Gate-level access
• Open system with fully specified operations and hardware
• Low-level access for optimal control down to gate pulses
• Open for comparison and characterization of gate pulses
• Open for vertical integration by users
Interested? Please talk to us for access
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