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Vicrofabrication enapbles scalable traps

Repeatable and reproaucible properties
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4 I Outline

Trap fabrication
capabilities

Phoenix trap
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5 | Trap fabrication capabilities e ®

v I O T .

M1

« Based on CEMOS back of line
* Crucial capabilities outside CMOS integrated
« Up to 6-level metallization

* Planarized

 Islanded electrodes

« Reduced rf capacitance

* Any electrode geometry can be realized
« Removed dielectric (better shielding)
« Integrated trench capacitors for rf shunting
« Loading holes and slots
* Release singulation (e.g. bowtie shapes)

Ring Trap

devicesilicon
handle silicon
5 p——_— .

Capacitor Top Capacitor
Electrode Bottom

Electrical Electrode
Via Capacitor
Dielectric

Spacer

Metal

Inter-level
Dielectric

% det HV curr  HFW dwell tilt
o TLD 2.00 kv 50 pA 47.0 ym 300.00ns 52.0°



6 ‘ High Optical Access trap HOA-2

Excellent optical access rivaling 3-D
e 2nt forimaging
* NA=0.2 through slot
* NA=0.12 skimming surface
High trap frequencies (characteristic distance 140um)
Full control over principal axes orientation
Junctions
Transitions between slotted and above-surface trap regions
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Calculating voltage solutions

« Boundary element simulation for surface electrode geometry

)0 0P 0P * Symmetric curvature tensor
Ordx  Oxdy  Ozdz 6 degrees of freedom
— a¢ 8¢ 8¢ b o . ° .
H = « Determines trap frequencies and principal axes rotations
OyOx OyOy Oy0z . L
gqb gqﬁ gqﬁ * Traceless for static fields
0z0x  0z0y 020z « Trace is generated by rf pseudopotential

« Calculate voltage solutions to independently control curvature tensor elements and fields at ion locations
« Use pseudo-inverse to get well-defined solution using nearby electrodes with minimal voltages
« Generate solution for any trap configuration from these basis-solutions

Advantages of parametric trapping solutions:

* Primitives are in terms of curvature tensor elements and can be applied
at any location in the trap.

» Shuttling primitives can be easily combined

Example:
» Rotating ion crystal while translating through the trap
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Principal axes rotation

Measured angle [deg]

Measure trap freq [MHz]

300

200

100

2.5

2.4

e Do we understand the

trapping fields?

2.3

2.2

W;M’ Slope 0.9¢ * Principal axes rotation
realized as in
;,v"’vx simulation
0 100 20 300 * Nochange in trap
Applied Angle [deg] frequencies
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Applied Angle [deg]
The simulations accurately describe the fields and curvatures generated by the trap
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Rotation of ion chains

To be characterized as function of swapping
time

» Swapping fidelity

« Accumulated motion

T
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Separation
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RF dissipation

Ce
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For 100 V amplitude at 100 MHz:

0 min.

10 min.

20 min.

30 min.

Thunderbird

RF Voltage at trap (~280 V)

HOA-2.0

HOA-2.1

Trap Temp C), R Hyp P, P,
HOA-2 300K 7.6pF 120 12MQ 140mW 4.2mW
4K 0.5 60 mW
HOA-2.1 300K 7.6pF 09Q 16MQ 100mW 3.1mW
4K 0.5Q 60 mW
Thunderbird 300K 24pF 0.6Q 15MQ 6.7mW 3.3mW

|
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40

w
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Temperature (°C), emissivity & transmission correction
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14 | Sandia Traps

Y-junction traps Circulator trap  High Optical Access (HOA) trap

b <

54800 1.0kV 15.3m

Ring trap: | '_‘

I
i

~ Switchable RF
junction trap

EPICS

trap__

$3400 10.0kV 26.7mm x13 SE 4.00mm




Phoenix trap fabrication
15 I Original plans for Phoenix

High optical access
topology: bow-tie
with 1.2 mm isthmus

On-board RF
shunt capacitors

Thru-chip slotted
quantumf‘region

— S

/4 N\

[ _— [TTTTTTTTTT] o] E Wirebond 1/0
wn—r

blocks at ends

Surface trap ion

loading region Capacitive pick-up
for RF voltage
measurement

Trap RF electrode
capacitance (length)
minimized

Temperature sensor and
resistive heater wires



Phoenix trap fabrication
16 | Trap features

Quantum region
e Segmentation of 22 inner

electrode pairs and 11

T = outer pairs for better

— control of ion chains and
spatial re-ordering of ions

e 22x70um = 1540um long
» * lon height 70um

Loading region
* 5 electrode pairs

Transition e Loading slot 180um x 3um
* 9degrees of
freedom 2
— ¢ Low spatial .

' frequencies




Phoenix trap
17 I Transition characterization
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« Transition between slotted and above surface parts of trap is optimized to minimize
variations in the trace of the curvature tensor

* RF pseudopotential hump is about 0.5meV for a 2.5MHz radial trap frequency

* lon height above slot and above surface differs to keep trap frequencies (trace of
curvature tensor) constant



Rf-dissipation in traps

electrical characterization

(=,

Ce
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| Re

Ry : Series resistance (lead resistance)

R, : (rf) parallel resistance (dielectric absorption)

C) : capacitance

For 100 V amplitude at 100 MHz:

Trap Temp C) R R, P, B,
Phoenix-0 (measurement) 300K 4pF 0.4 5mW
Phoneix-surface (calc.) 4K 0.05Q I mW
Phoenix-slotted (calc.) 300K 5.5pF 0.4Q 9.4mW
4K 0.05Q 1.4mW
HOA-2.1 300K 7.6pF 0.9Q 1.6 M2 100mW 3.1mW
4K 0.5Q 60 mW
Thunderbird 300K 24pF 0.62 1.5MQ 6.7mW 3.3mW
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19 ‘ Custom trap package

Legacy 4 Level CPGA Packaging Assembly

—

lon Trap Die
Interposer

Spacer \ \4

Y —
Ann
Objectives:

* Improved rf- and ground performance

« Compatible with bowtie chip without interposer

» Simplified assembly
» Backwards compatibility with MQCO package

Properties:

« AN for improved thermal conductivity and
reduced thermal expansion vs Al,O;

» Two rf connections with minimized
capacitance (3pF) and resistivity (50mOhm)

« Backwards compatible with prior HOA devices

» Metal coverage of top surface

« All metal is signal or ground (no floating metals)

Simplified 2 part assembly




Custom trap package
Is available

Compared to commercial off the shelf package

» Top surface mostly metal (grounded)

* Low resistance of rf and ground paths
(massively parallel vias, routing on outer layers)

$3400 10.0kV 37.9mm x13 SE 11/1/2018




21 I Gate Set Tomography (GST)

Developed at Sandia by
QCVV team

* No calibration required

* Detailed debug information

« Efficiently measures
performance characterizing
fault-tolerance (diamond
norm)

« Detects non-Markovian noise

Uses structured sequences to amplify all possible errors

QO
i Ele

Prepare germ germ germ germ Measure




22 I GST sequences

Single qubit BB1 compensated microwave gates on 71Yb*

Prepare germ germ germ germ Measure

Desired “target” gates:
G; Idle (Identity)
G, /2 rotation about z-axis
G, m/2 rotation about y-axis

Fiducials: {} Germs:
i Gz - Gy
Gy Gux - Gy -G
Gz - G- Gy
Gu - G Gz - Gi- Gi
Gz -Gz - Gx Gy« Gi - G
Gy -Gy -Gy Gz -Gz - Gi- Gy

Approximately prepare 6 points on Bloch sphere Gz . Gy - Gy - Gi
Gz -Gz -Gy -Gz -Gy -Gy




23 1 GST:

debugging microwave gates

Gate

Rotn. axis

Angle

Gr

0.5252

—0.009

0.8506
—0.0244

0.0016997

Gx

—3 % 107"
1
—3x107°
—0.009

0.5013087

—0.2474
0.0001
0.9689

—0.0001

0.5013667

1073

17-Apr 2-Dec 9-Feb 2-Mar 30-Mar
Experimental run



24 I GST: debugging microwave gates

Gate | Rotn. axis Angle

0.5252 107 . . p .
—0.009 [ x .
Gr | gssop | 0-0016997 | Gy —®

—0.0244 |- ]

Gx

—3 % 107"
1
—3x107°
—0.009

0.5013087

—0.2474
0.0001
0.9689

—0.0001

0.5013667

Gate

Rotn. axis

Angle

Gr

—0.0035
0.014
—{).g099
0.0006

0.0017697

—3x10°°
-
1 % 10—
0.0006

0.5000077

0.1104
4x 1075
0.9939
0.0005

0.500017

10~4

17-Apr 2-Dec 9-Feb 2-Mar 30-Mar

Experimental run



25 I Context and time dependency of gates

Assumptions:

* Qubits in a box

* Pressing a button always executes the
exactly same operation

» Independent from context (gates
executed before)

* Independent from when a gate is
executed

GST uses a large (over-complete) number of
sequences.

We can look whether the assumptions are
satisfied

Ongoing work to improve and distinguish
detection of context and time dependence
of classical control




26 I GST model violation

Thex” values from the fits are expected to follow a x> distribution with

mean k and standard deviation /9L

30 —————
2
X" —k Microwave
vV 2k o5 L off during
c o identity
= O
o o0 | gate, next
RS gate is
g% 15 | affected
€5
o; -8
Qs 10
E 7}
= £
5
0

wait ——

BB1 wait —=—

BB1 XX ——
BB1 XYXY

first data ——

1 10

100
sequence length

1000 10000

BB1 decoupled gates with decoupled identity have very small
non-Markovian noise



27 I GST model violation

GGGy GGy Gy
GxGyGyGi
GxGxGiGy

GyGiGi
G=GiGi
= GxGiGy
P
w
S GxGyGi

GGy

Gy

| IJ
' nn

1 2 < s 16 32 54 128

L

» Checking and optimizing a system for

256

ol2

Red boxes show sequences which violate
the Markovian model

For a Markovian realization with 95%
probability there are no red boxes
These sequences show context
dependency of gates

X- and Y- gates behave differently if
applied after an | gate



28 I GST: Microwave results

Best results for microwave single qubit gates:

* BB1 dynamically compensated pulse sequences
* Decoupling sequence for identity gate
e Drift control for m-time and qubit frequency
95% confidence intervals

Gate | Process Infidelity 1/2 o-Norm

Gr 6.9(6) x 1075 7.9(7) x 1075
Gx 6.1(7) x 1075 7.0(15) x 107°
Gy 7.2(7) x 107°> | 8.1(15) x 10

All gates are better than the fault tolerance threshold of 9.7 x 107°

P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007).




29 I Two-qubit gate implementation

* Mglmer-Sarensen gates [1] using 355nm pulsed laser
» All two-qubit gates implemented using Walsh compensation pulses

[2] n+1
111) ; n

“Vertical” “Horizontal”
Tilt COM Tilt COM

4 N

01)

n+1

n-1

|
AR 00) —W&— n

: \} L\]\ ™~ n-1
|00) — 00) + [11)
2 2.2 2.4 2.6 2.8 Heating rates

S/

RamanSingleDetuning (MHz) ~ 60 quanta/s

[1] K. Malmer, A. Sgrensen, PRL 82, 1835 (1999) < quanta/g

[2] D. Hayes et al. Phys. Rev. Lett. 109, 020503 (2012)



30 ‘ GST on symmetric subspace

Prepare germ germ germ germ
Basic gates: G
Gxx =Gx ®Gx c
erms:
Gyy = Gy ® Gy
G
Gums .
Preparation Fiducials: Gyy
Gus
{} G1Gxx
Gxx G1Gyy
GrGus
Gyy GxxGyy
Gus GxxGus
GyyGus
GxxG
XXUMS GG 1Cxx

Gyy GMS G1GiGyy

Measure

Detection Fiducials:

]
|



31 I Two-qubit gate characterization

Gate | Process infidelity % Diamond norm

Gt 1.6x102+1.6x1073 | 28 x 1073 £ 7 x 1073

Gxx | 0.4x1072+1.0x1073 | 27 x 1073 £ 5 x 1073

Gyy | 0.1x1072+£09x1073 | 26 x1073 £4 x 107"

Gus (421073 D)0.6 x 107° | 38 x 1073 £5 x 107
e

95% confidence intervals

Process fidelity of two-qubit Malmer-
Serensen gate > 99.5%

The best characterized two qubit gate

By the way: It’s in a scalable surface trap

[

‘i: _ -



2 I QSCOUT DOE Quantum Testbed Laboratory

Testbed systems designed for open access to support scientific applications
. High-fidelity operations #gates o (#qubits)*

* Gate-level access

* Open system with fully specified operations and hardware

* Low-level access for optimal control down to gate pulses

* Open for comparison and characterization of gate pulses

* Open for vertical integration by users

Interested? Please talk to us for access
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Trap design and fabrication Trap packaging Trap design and testing
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