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autonomous driving

https://techcrunch.com/20 I 5/ I 0/09/dont-blame-the-robot-drivers/

natural language processing

image credit: Apple Computers

data classification
•114PIP,Allitz
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Q. Le, IEEE ICASSP pp. 8595-8598, (2013)

brain machine interfaces

image credit: Popular Science
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new markets utilize artificial neural networks that incorporate
elements of learning loosely inspired by biology



Evolution of Computing Machinery
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CMOS architecture not designed for data-driven NNs Sandia
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Overcome CMOS bottleneck4in-memory computation Sandia
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To beat ASICs, GPUs:

• scalable: analog signals must reach
edge of 1,000 x 1,000 matrix (R>100
MD)

• "blind writes" with linear and
symmetric programmability

• accurate: matrix operations must have
CMOS equivalent accuracy

• low variation, degradation: must cycle
> billion times without changes
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Fundamental physics dictates memristor
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filament forming metal oxides (FFMO)

Yang et. al. Nature Communications (2012)

phase change materials (PCM)

MIN
Breitwisch, Phase Change Materials: Science
and Applications © 2009 by Springer

I —
200

100

z

0

o

-100

-200
-2 -1

Voltage (V)

J. J. Yang , I. H. Inoue , T. Mikolajick ,
C. S. Hwang MRS Bull. 37, 131 2012

a) 2
10

10°
a)

2

0 0 5 1 1.5
Voltage (V)

A. Pantazi, S. Woiniak, T. Tuma, E.
Eleftheriou, Nanotech. 27 2016

2



Fundamental physics dictates memristor
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Non-linearity, high conductance limit accuracy, scaling Sandia
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Intel 3D Xpoint PCM memristor memory
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Linearity demonstrated; conductance remains high
Sandia
National
Laboratories

• Increase conductance 4 synchronized V+ to memristor, FET gate; set I compliance

• Decrease conductance4 reinitialize memristor, then increase conductance as above
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Operating in conductance limit increases noise
Sandia
National
Laboratories

Received 25 Aug 2015 l Accepted 25 Feb 2016 l Published 4 Apr 2016 DOI: 10.1038/ncomms11142 OPEN

Quantized conductance coincides with state
instability and excess noise in tantalum oxide
memristors
Wei Yi1'2, Sergey E. Sayel'ey3, Gilberto Medeiros-Ribeiro1-4, Feng Miao1'5, M.-X. Zhang1, J. Joshua Yang1'6,

Alexander M. Bratkoysky1'7'8 & R. Stanley Williams1
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lon-insertion electrodes for neuromorphic computing
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Lithium-ion synaptic transistor (LISTA) or "NVRT" Sandia
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2 models for insulator4metal transition in LiSol; Sandia
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Lithium insertion into Liji0, (anatase)
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Low switching V, high endurance with Liji02 LISTA Sandia
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Liji02 LISTA addressability, retention
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LISTA work is inspiring new 2D systems Sandia
National
Laboratories

a

LISTA - WSe2

-

Electrolyte

c

h

d

PMCA/
NCX

Liiffusicr E.xtractioli Int

•VC4:00000ti

Zhu et al Advanced Materials 2018

LISTA - MoOx

a

GCC/
NMDA

rcalation

9 6. 5
46

— 44
inc

a)
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Polymer non-volatile redox cell
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Organic non-volatile redox transistor
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PSS increase decreases conductance, maintains linearitAkaartVoriaialLaboratories
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Low read/write current, MHz speed, high endurance Sandia
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Use binary, volatile selector for outer-product update Sandia
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selector: diffusive memristor
normally OFF, VT = 150 — 400 mV
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lonic floating-gate memory
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ionic floating-gate (IFG) equivalent circuit SONOS
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van de Burgt, Nature Materials I 6, 4 I 4, (20 I 7)
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Non-volatile redox memory — a floating gate memory Sandia
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Diff. memristor + NVRT Ionic Floating Gate Memory National
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First test of addressabilit
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Parallel updates in a 3x3 array Sandia
National
Laboratories

29

iirl V2 4* V3 lPhR ga 
RS

V, e 
W. 111 Ai
rrv9.

2 t, SISI Av..
V3 bciii 
A A Ai

.1 vi i vi 1 mi

fi 0 .0

0 100 uS

G-G0

Scalable 4 program an entire 1,000 x 1,000 matrix in a single operation



Simulations
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Speed for Li devices requires scaling below 100 nm
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Sputtered LiPON
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The Pentagon's Push to Program Soldiers' Brains National
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The mission is to make human
beings something other than
what we are, with powers beyond
the ones we're born with.

https://www.theatlantic.com/magazine/archive/2018/11/the-pentagon-

wants-to-weaponize-the-brain-what-could-go-wrong/570841/
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Polymer NVRM for brain-machine interface Sandia
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PEDOT:PSS ionic-electronic neurotransmitter pumps National
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Polymer FET bio-sensors coupled with plastic NNs Sandia
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www.eenewseurope.com
June 2018
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ex-M, done: Next co
networks on plastic

In the case of the PlasticARMPit project, Unilever was the
one who came with the business case. The idea is to couple a 
flexible and multi-analyte e-Nose sensor with a plastic NN onto
a wearable patch to detect armpit malodour composition and
determine how effective the company's antiperspirants and
deodorants are. In this particular research project running until
March 2020, PragmatlC will integrate organic TFT bio-sensors
developed at the University of Manchester, but outside of this


