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Abstract—With increasing availability of synchrophasor tech-
nology, enabled by phasor measurement units (PMUs), appli-
cations based on this technology are being implemented as a
practical approach for power systems monitoring and control.
While synchrophasor data provides significant advantages over
SCADA data it has limitations especially in the area of model
validation and estimation. With the increasing complexity of
the power system, the need for equipment monitoring and
performance evaluation becomes more relevant. Traditionally
model validation and estimation process can be used to look at
control equipment performance. However, due to the challenges
associated with these processes there are limitations on the per-
formance evaluation. This work expands a previously introduced
algorithm to monitor control system performance to allow the
algorithm to work under power system ambient and disturbance
conditions. Additionally the algorithm is demonstrated on data
obtained from the interconnection point of a STATCOM device
during ambient and disturbance operation.

I. INTRODUCTION

Synchrophasor technology, enabled by phasor measurement
units (PMUs), is now prevalent in power systems around the
world. Applications based on this technology such as state
estimation are being implemented as a practical approach for
power systems monitoring and control [1], [2]. PMUs also
provide much higher data resolution than traditional SCADA
measurements. This allows the data to be used for a variety of
equipment monitoring and evaluation purposes, such as model
validation and performance monitoring [3].
A significant amount of work has been done using PMU

data for dynamic state estimation; in [4] this approach is used
for synchronous generator model validation and identification.
While PMUs nominally report data at 30, 50 or 60 samples per
second, most generator model calibration algorithms require
much higher sampling rates [4]. This means PMUs with higher
resolution need to be installed to monitor and evaluate detailed
generator control system performance.
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The work in [5] introduces a low-order dynamic model of a
generator to estimate and monitor generator control system
performance without requiring higher sampling rates. The
work also proposes an initial algorithm to use disturbance data
taken at the point of interconnection to monitor the control
system performance. This paper introduces an enhanced ver-
sion of that algorithm to monitor the control performance of
a STATCOM using synchrophasor data taken at the point of
interconnection. Unlike the original algorithm introduced in
[5] the enhanced algorithm proposed in this paper does not
rely only on disturbance data, but is capable of using ambient
data without any power system disturbance content.
The proposed algorithm is capable of identifying control

system performance based on the small changes in steady
state operating condition of the power system due continuous
load changes and changes in generation equipment outputs.
Because synchronous generator control equipment such as
exciters and governors often do not act on such small changes
due to controller deadbands, it is extremely difficult to mon-
itor their performance under ambient conditions. However,
Flexible AC Transmission System (FACTS) devices such as a
STATCOM continuously operate without deadbands and react
to small changes, allowing the proposed algorithm to monitor
performance almost continuously [6].
The remainder of this paper is organized as follows. Section

II introduces a dynamic model of a STATCOM. Section III
introduces the enhanced algorithm proposed in this work.
Section IV contains the performance evaluation results of the
STATCOM using disturbance data. Section V contains the
performance evaluation results using ambient data, and finally
Section VI concludes the paper.

II. STATCOM

This section introduces a STATCOM and the dynamic
model used in most power system simulations [6]. A STAT-
COM is a voltage- sourced converter based FACTS device
that can inject reactive current into the network to support
the voltage at its terminal bus. Figure 1 shows the connection
diagram of a STATCOM.

Figure 2 shows the terminal voltage vs the injected current
of the STATCOM under normal operations with droop control.
Figure 3 shows a dynamic model of a STATCOM [7]. Based
on this dynamic model and given the voltage error

Verr = Vref VT (1)
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Fig. 3. Dynamic model of a STATCOM

where VT is the terminal voltage indicated by Vsh in Figure
3. The reactive output current can be written as

(1 + sT2)8
ish =  Verr (2)

1 + s(T1KA + Xc) +

Assuming a constant voltage schedule and Vref, , no sup-
plemental control signal V5, and T1 T2 [8] this can be
simplified to

rsh =  Verr = 
KA  

Tierr (3)
KA + SX-c 1+ s;,C,rs A

Note that this simplified model is very similar to the
simplified voltage control model introduced in [9] and [5].

III. ENHANCED PERFORMANCE MONITORING

ALGORITHM

Figure 4 shows the original performance estimation al-
gorithm proposed in [5]. The first 2 stages involve some
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Fig. 4. Algorithm to obtain estimated dynamic model

data pre-processing to remove any noise and the DC bias
component. The proposed enhancement in this paper replaces
these two stages with a PMU signal separation algorithm,
which is designed to separate the signal into a 3 distinct
components representing the quasi-steady state (QSS), the
dynamic component of the signal and the noise component.
Section III-A describes this proposed signal separation in more
detail.
The proposed enhancement also improves the time constant

and gain estimation in stage 3 by taking into account the
relative weight of each parameter and adjusting accordingly
the numerical optimization. Section III-B describes those
adjustments in more detail.

A. Signal Separation Algorithm

For the purpose of this analysis, any PMU signal is consid-
ered a summation of 3 components:

x(t) = xqss(t) + xd(t) + xn(t) (4)

where xqss(t) represents the QSS component, xd (t) is the
dynamic component and xn (t) is the noise component of the
signal [10]. By considering a signal without any noise such as

y(t) = 2Jq55(t) + yd(t) (5)

the QSS component and dynamic component can be explained
in more detail.

Figure 5 shows such an ideal signal y(t) and its QSS
component. In a power system the QSS represents the changes
in the steady state operating conditions due to changes in
the load or generation setpoints. During normal operation this
component is composed of the slow parts of the signal. During
disturbances such as generation trips the operating point of
the system can change rapidly and the QSS component also
contains some faster parts of the signal. Figure 6 shows another
example of an ideal signal without noise during a generation
trip and its QSS component.

Figure 7 shows the dynamic component of these two exam-
ples. This component is due to the synchronous generators and
control equipment interacting in the system. This components
contains parts of the electromechanical swings and parts of
faster oscillations present in the signal.
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Figure 8 shows the algorithm used to separate these 3
components from the original signal. Initially, a median filter
is applied to remove individual outliers due to issues in the
PMU phasor computation [11]. The resulting signal is then
passed through a low-pass filter of the form

aoxmed[k] + alxmed[k - 1] + a2xmed[k - 2]
xlpf[k] -   (6)

blxlpf [k - 1] + b2xlpf [k - 2]

with

ao = 0.0744 al = 0.1487

bl = 0.1487

a2 = 0.0744

b2 = 0.3919

This filter removes any high frequency noise that is present
in the signal. Then a first-order empirical mean decomposition
(EMD) is used to remove the QSS component, a step similar
to stage 2 of the algorithm in 4 [5]. The EMD estimates an
upper and lower envelope of the signal similar to that seen in
Figure 9. The first part of the QSS component is computed by

xupper(t) + xiower(t)
Xqss 1 (t) - (7)2

the remaining part of the signal is passed through a high-pass
filter of the form

aoxemd [k] + alxemd[k - 1] + a2xemd[k - 2]
bixhpf [k - 1] + b2xhpf [k - 2]

Xhpf [lc] =

with

ao = 0.9767 al = -1.9534

bl = -1.9529

a2 = 0.9767

b2 = 0.9540

(8)

This additional filtering removes any remaining slow fre-
quency DC-bias components that are not part of xqss 1(0.
Finally, the three components are computed as

Xqss (t) - Xqss 1 (t) (Xemd(t) Xhpf (t))

xd(t) = xhpf(t)

xn(t) = x(t) - xqss(t) - xd(t)

(9)

(10)

(11)

where xemd (t) and xhpf (t) are the signals after the EMD and
the high-pass filter are applied, respectively. The remainder of
the performance estimation algorithm uses only the dynamic
component of the signal. However, other PMU data applica-
tions such as fault identification [12] or cyberattack detection
could potentially use the other components of the signal.

B. Time Constant and Gain Estimation

In [5] a simple algorithm to estimate the parameters of (2)
is to minimize the squared-error function

J = q- H(s) *VT12 (12)

where

H(s) Ts + 1

However, an issue raised in [5] is that the resulting time
constants vary significantly. Further analysis of this issue has
shown that a change in K has a significant effect on J while
a similar change in T has a much smaller effect. Therefore
any numeric optimization such as those in [13] will result in
K converging to a consistent value while the final value T is
dependent on the initial guess and the number of iterations in
the numeric optimization.

In order to make the time constant obtained more consistent
over the various data windows, a 2-step optimization approach
is proposed. Initial values for K and T are obtained by
optimizing (12) using (13) with both K and T as adjustable
parameters. In a second step (12) is optimized with only T as
an adjustable parameter and K set to the value found in the
previous step. This approach has proven effective in increasing
the consistency in the estimation of T for similar datasets.

(13)

IV. DISTURBANCE DATA RESULTS

This section contains some results obtained on the perfor-
mance of a 200 MW STATCOM using the proposed algorithm
based on historic PMU measurements during power system
disturbances. Figure 10 shows the voltage and reactive current
output of the STATCOM during one of the events. Figures
10a and lOc show the raw PMU signal as well as its QSS
components. Figures lOb and lOd show the noise component
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Fig. 10. Signal separation results during disturbance

as well as the dynamic component which is then used to
evaluate the STATCOM's performance.

Figures 1 la and 1 lb show the voltage control performance
using the full signal as and only the dynamic component of the
signal respectively. While during the disturbance the full signal
shows the droop reasonably well, the dynamic component
shows the droop more clearly.

Table I contains the estimated droop and time constants for
16 disturbance events. The droop is between 2.70% and 4.36%
in all cases, which indicate the STATCOM was performing
similarly during all disturbances. The time constant is between
14.08 ms and 55.57 ms in all cases. The droop has a mean
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Fig. 11. STATCOM voltage control performance during disturbance

TABLE I
DISTURBANCE DATA RESULTS

Disturbance Droop (%) TQV (ms)
1 2.70 23.28
2 2.81 14.83
3 3.53 14.08
4 3.50 22.54
5 2.89 18.04
6 4.36 55.57
7 3.54 17.73
8 3.19 24.07
9 2.74 30.23
10 3.64 20.15
11 3.18 37.86
12 2.87 24.13
13 3.04 36.89
14 3.16 10.35
15 2.94 31.85
16 2.94 43.88

of 3.19% and a variance of a = 0.189%. The time constant
has a mean of 26.59 ms and a variance of a = 146.94 ms.
Due to the fast nature of the power electronic interface of the
STATCOM the time constant is relatively small and can't be
estimated more accurately using the synchrophasor data.

V. AMBIENT DATA RESULTS

This section contains some results using the proposed
method on ambient data sets. Figure 12 shows the voltage
and reactive current output of the STATCOM during normal
operation. Figures 12a and 12c show the raw PMU signal
as well as the QSS components of the signals. Figures 12b
and 12d show the noise component as well as the dynamic
component which is then used to evaluate the STATCOM
performance. While the dynamic component of the signals
is very similar to that in Section IV, the QSS component
is different since there is no large voltage change due to a
disturbance.

Figure 13 shows the voltage control performance using the
full signal as well as using only the dynamic component of
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the signal. During the ambient operation the action of the
STATCOM is quite enough, which makes it is very difficult
to see in the full signal. In the dynamic component it is still
visible.

Table II contains the estimated droop and time constants for
14 ambient data sets. The droop is between 2.63% and 3.81%
in all cases, which indicates the STATCOM was performing
similar to the disturbance in Section IV. The droop has a
mean of 3.14% and a variance of a = 0.148%. Similarly, the
estimated time constants are between 11.04 ms and 44.76 ms
with a mean of 28.50 ms and a variance of a = 99.65 ms.

TABLE H
AMBIENT DATA RESULTS

Disturbance Droop (%) TQV (ms)
1 3.24 11.04
2 3.07 35.13
3 2.96 32.71
4 3.19 24.80
5 2.63 14.10
6 3.22 21.78
7 2.95 38.38
8 3.17 38.44
9 2.36 44.76
10 3.39 30.83
11 3.05 18.77
12 3.80 26.85
13 3.10 24.01
14 3.81 37.38

Figures 12 and 13 show 30 seconds of ambient data, which
is taken shortly before the disturbances in shown in Figure 10.
Due to some missing data issues it was not possible to take
ambient data before all 16 disturbances.

VI. CONCLUSIONS

This paper introduces an EMD-based algorithm to estimate
a simplified dynamic model of a STATCOM based on the
point of interconnection measurements. The estimated dy-
namic model can be used to evaluate the performance of
STATCOM compared to historical performance and identify
any changes in control system parameters.
The work includes some historic results based on distur-

bance data as well as ambient data. The results obtained using
ambient data match the results obtained during disturbance
events reasonable well. Since ambient data is constantly avail-
able this greatly improves the usefulness of this algorithm.
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