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2 Motivation: Failure in brittle materials
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Sandia interest: Brittle materials often fail from fracture
during typical use and environmental exposure.

Challenge: Make 30 year lifespan reliability predictions for
components containing brittle materials

Images courtesy of Kevin Strong (SNL) and Steve Dai (SNL).



3 Atomistic fracture simulations
(a)

Fixed regions

(b)

Simulation

Question:
What impact does chemistry have on
fracture toughness?

• Our method can apply to any full-field
displacement solution, e.g. digital image
correlation or FEA

Experimental

Density (gm/cm3) 2.16 +/- 0.01 2.20

Young's modulus (GPa) 77.90+/- 2.02 72.9

Shear modulus (GPa) 25.81 +/- 0.95 31.3

Poisson ratio 0.250+/- 0.005 0.165

• -60 X 30 X 5 nm
• ReaxFF potential
• -400K atoms
• 540 processes
• -30 day computational time
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4 Williams expansion — LEFM fields
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• Solutions to the Airy stress function, in terms of displacements

r
• Any given observed discrete displacement about a crack tip can be

crack tip
described in terms of the Williams expansion



5 Basis set projection method
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• Project noisy data into the continuous
space of the Williams expansion

b • a
a,ba =  

a • a

b • a
=

• Define a vector displacement function

• Observed displacements can be defined in
terms of the Williams expansion

• Project the continuous Williams functions
from the left

• Considering all {m,n} combination, this
results in a linear system of equations

K 1 = v 2TrA 1 K I I = 2-rrA T = 4A21 2 1

Wilson et al. in review, Comp. Meth. App. Mech. Engin. 2019



6 Proof of concept

• Use a simple "toy" model to
demonstrate the technique
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• The best case scenario in that,

• crack tip location is known
• applied field is known
• no blunting of the crack tip
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7 Numerical method sensitivity and errors

Error in K1
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• Toy model is computationally fast and can be run hundreds of times over a range of
applied fields

• Systematic errors are identified and can be utilized to estimate expected error in
systems where the applied field is unknown



8 Method applied to MD fracture
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- • All propagation events
• Maximum in K1

• Systematic error in measurement can be assessed from the Iast 41
immslide: —2%

• Significant strain magnitudes are due to characteristic length

scale of fracture
Held in constant strain
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10  Numerically Iocating the "true" crack tip

• We exploit the separability of the LEFM fields

to identify the crack tip location

• A cost function can then be minimized to find
spatial location

0.03

0.025

0.02
.10

2 0.015

0.01

0.005

Crack tip located at (0,0)
'o o

(a)

rn/2

u(r, 0) = >7, A f (0)
n= 0 I-1

CI)R(x, y) =

(1)0(x, y) =

N 
I

N j = 1

1  

N j =1

PiR(r,e)- LIPT(r,e)1

PP(r 0) — P e(r
' 
0)

1 

(1)(x, y) = (x, y) • 0(x, y)

o r = 0.271
o r = 0.479
o r = 0.688 -
o r = 0.896

-4 -2 0 2
0 (rad)

0.025

t, 0.02

43
-00 0.015

0.01

0.005

.(c)

o 8 = -2.62
a 0 = -1.57
o 9 = -0.52
• = 0.52
4 9 = 1.57
0 = 2.62

0.2 0.4 0.6 0.8 1
Radius (-)

0.03

0.025

k 0.015

0.01

0.005

Crack tip located at (-0.167, 0.833)

(b)

-4 -2 0 2
(rad)

0.025

>. 0.02

-§ 0.015

0.01

0.005
0.2 0.4 0.6 0.8 1

Radius (-)

n



11 Applying method to molecular dynamics
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12 Summary

• Developed a novel computational method to determine fracture toughness from
atomistic MD simulations. Results for silica glass agree with experiment

• Method maintains chemical specificity and microstructural content

• Showed that correctly identifying the crack tip location is a necessity for accuracy

• Impact: Developed the capability to study the atomic origins of intrinsic material
properties; important for understanding influence of chemistry on fracture
toughness and impact of corrosive agents

Thank you for your time and attention!
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Extra slides



14 Numerical method sensitivity and errors
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