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Evolution of Computing Machinery
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Digital and analog implementations of neural networks 
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Von Neumann Digital
Separate logic and memory structures

SRAM to store the
weights

Arithmetic logic unit
for multiplication

Data Bus

 0 x1
Uses established CMOS technology
Data bus results in latency and power

input layer
hidden layer 1 hidden layer 2 hidden layer 1

In-memory Parallel Analog
Use non-volatile memory

Crossbar for matrix
multiplication
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3 orders of magnitude less power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
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Redox transistors based on electrochemcial ion insertion 
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Substrate

Dynamic control of the lithium doping level
using current and voltage
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Y. Li, W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018) _



Lithium insertion into Liji02  (anatase) 
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Redox transistor using Liji02  (anatase) 
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Redox transistor using LixTiO2  (anatase) 
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Two-terminal vs three-terminal synaptic memory 

Memristor

R Oxide

Write
Read

Read and write signals through
the same channel

During write, most electrons
used for joule heating rather

than weight updates

Redox transistor

Write

Gate

Electrolyte

Channel

//
Read

Separate read and write channels; All
"write electron" used for weight

updates (RR)

Predictable and linear weight updates
Low write energy
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Linear programming and high accuracy
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Memristors store information at
filaments

Wang et al. Nat Mater. 2017
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Exceptional low-power consumption 
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Switching speed and endurance 
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Low-voltage, Si-free electrochemical memory 
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Diffusive memristor (Ag in
Si0x): high ON/OFF ratio

Redox transistor: high charge
density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater.  2017

Non-volatile memory that switches at just 6 times the thermal voltage
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u V/2 crossbar programming scheme 

Devices are selected through applying
the row and column voltages
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Selecting a row or column will not disturb the device
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Redox transistors for neuromorphic computing 

Analog neuromorphic computing provides lower energy and
more parallelism compared to digital computing.
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100 billion neurons
100 trillion synapses

Electrochemical ion insertion can be used to create highly
linear, low voltage non-volatile analog transistors
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rFrom batteries to redox transistors 
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