Laika BOSS: File-Centric
Intrusion Detection System

Wellington Lee, Cy

bersec

urity

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

R&D

SAND2019-4749C

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Overview

File-Centric IDS
Laika BOSS
Examples

Why Laika BOSS?

Installation

Laika BOSS Development

3

File-Centric IDS

IDS that analyzes files (objects transferred through network)
Scan

(yara, xor-search, pdfrate, etc)

Decode
(zip, MIME, OLE, etc)
Metadata

(document author, PE section name, image size, etc)

Benefits
Address attacks visible in network payloads vs. network protocols

Consistency/re-use of content (mail, web, bulk malware, analyst driven)

Ease of detection content creation/deployment

+ . Network IDS vs File IDS

omm~<] Packets
- * From - To

-+ Reassembled » Received Time
Reassembled TCP Stream + Sent Time

+ |P Addresses
TCP Stream « Subi
&Q% SMTP Exchange ,?_Ub’eCt]

/
1

Packets

&Q% SMTP Exchange

E-Mail
+ Filename

» Hash

» Created Time

E-Mail Headers

)
(Headers + MIME) Body) ye
{/

: Attachments
Plaintext/Body f ZIP File

Executable
Baseb4 blobs (Malicious) + Filename
*» Hash
@ + Created Time
& « Compile Time
: + Digital Signature
+ Section Hashes
« Import Table

15 00334 003a
|
. - e o Figure 4: Laika IDS view of an exploded email,
Figure 3: Traditional NIDS view of a malicious st .. 7 b .
i . . showing a malicious executable contained within
email with payload hidden through encoding .
' ‘ a ZIP file and extracted metadata)

Credit: Lockheed Martin Laika BOSS whitepaper l

Laika BOSS Overview H

File Centric IDS

Designed for email, web, bulk file, and analyst directed scanning
Modules for each file analyzer

Implemented in Python

Relies heavily on Yara for signature matching, configuration
Highly Scalable

Inline (Blocking Mode) Capable

Strong Configurability, Great Transparency, Good Enough Performance
Open Source by Lockheed Martin

¢ | Laika BOSS Recursive Scanning _

Obiect Dispatch Modules Module Output | 2nd Dispatch I
Jec | (wait for Sub-objects to Complete)
|
. D} th | Malicious PE in Zip as
5 i | .
Laika 0 Igc PSCAN—YARA | Dispatch Emall AttaChment
Worker New File: : (5] = i
Headers q : LOG_FLUENT % Reatls
l F-
New File: ') \ . |
R Temi | 5@24 E-Mail
[[| |
|
| . Headers
Add metadata, flags, and new object | ; 1
o : | Body | £
u .
Dipeic | Attachments 4
| [.
) . ZIP File
|
: Executable
| (Malicious) ' I
Add metadata, flags, and new object :
® = : ®
Dispatch ' Dispatch "
OGNy, . r.c _\)|

Credit: Lockheed Martin Laika BOSS whitepaper I

7 | Laika BOSS Recursive Scanning (cont.) _

I
@ s o Malicious PE in Zip as
Lot Email Attachment
]
€2 E-Mail |
5y | Headers)
Text/HTML VEVEE) SCAN YARA - N
P P ScAL I Body | 2
Attachments 4
ZIP File

Executable
('3) (Malicious) | I
E-mail Dispatch Dispalch
Headelg o o a LOG_ALL-META &®
|

S >

Credit: Lockheed Martin Laika BOSS whitepaper I

s | Laika BOSS Scalability, Versatility, Performance]

Clients Laika Cluster
Network =\ | Lika Worker Example Enterprise
Sensors K4 Threads Deployment
Laika Client — :
ZMQ —& Laika Worker
Broker =8 Threads |6 servers x

24 cores / server

=L Laika Worker
Proxy Servers R4 Threads

@@ A =% | aika Worker 384 scanning cores
K4 Threads

ICAP
Server

Laika Client Scan Time Distribution

B Laika Worker
R4 Threads

ZMQ
ﬁ Analyst Broker B | aika Worker

Desktop R4 Threads

Laika Client
, Laika Worker
K 4
ZMQ

) Broker =~ |aika Worker
; Milter K4 Threads
Mail Servers Servers

X Laika Client 0.10 0.15

Scan Time (s)

Credit: Lockheed Martin Laika BOSS whitepaper

4> sample.eml X

Content-Type: multipart/mixed;
boundary="=_dad7f52f99afb08949f87d29549702c3"
Date: Wed, 24 Apr 2019 18:09:41 -0600
From: alabank@orko.net
To: Ella Beltzetan <ebeltze@orko.net>
Subject: Open this attachment, trust me it's safe! ,
Organization: Orko Electric 1 I
Message-ID: <583d22f1b274346473a6d1d7bcc6f3db@orko.net>
X-Sender: alabank@orko.net
User—-Agent: Roundcube Webmail

MIME-Version: 1.0 1 I

BWN R

Email -> Zip -> Exe

S OWOO~NOWU

=

N =

2

——=_dad7f52f99afb08949187d29549702c3

Content-Transfer—-Encoding: 7bit

Content-Type: text/plain; charset=US-ASCII;
format=flowed

F

nh w

00N O L

Open the attachment because you want to!

Amaya Labankada

CIO, Orko Electric

alabank@orko.net

——=_dad7f52f99atfbh08949187d29549702c3

Content-Transfer—-Encoding: base64

Content-Type: application/zip;] I

1
9,
Z

name=setup.zip
Content-Disposition: attachment;
filename=setup.zip;
size=1124847

WININN

VNP OVOOONOODUDLTE WN

UEsDBBQACAAIANUImU4AAAAAAAAAAAAAAAAPABAAQ2hyb211U2VOdXAuZXh1VVgMAIJcwVyCXMFc] .
1T5rt+S9el1xclbU4 fmbmwBxgYCZxSEhCDBGSOETFDFpwiALJTIhmcAgygAmgNVIcXzGck8QaEDxM |
y2HnWHurt/Z3671a7f3a2nsbbzUPnz0QBhJtQhKvRpNWtKluPFQnijBJkPNba58ZQnz03t8/v3++
yYdz9tmPtddee+312K/x3fwIZ+E4joc/Xeed43Zzxr5T7n/91lmTguY8FLGdwLKX+6aLdpzZ8uugnl

36 jtacjZvu/cGmW+/0Que3We+65V8z5/u@5m6R7cu6432f1jdU5d9+74FfbLOINTc+Mw+09v10@0tHY50

Line 16, Column 15 Spaces: 2 Plain Text

W W w

Relevant Modules

META_EMAIL:

Metadata on email

"META_EMAIL": {

"Attachments": [
"setup.zip"

]
}s

EXPLODE_EMAIL.:

Extract out parts and attachments of email

EXPLODE_ZIP:

Extract files from zip archives

"EXPLODE_ZIP": {

"Total Files": 3,
"Unzipped": 3
}s

1 | Relevant Modules (cont.) _

META_PE:
Extract metadata from PE files

"META_PE": {
"Subsystem": "IMAGE SUBSYSTEM WINDOWS GUI",
"Image Characteristics": [
"IMAGE FILE 32BIT_MACHINE",
"IMAGE FILE EXECUTABLE_IMAGE"
1
"Timestamp": 1552947293,
"Stack Commit Size": 4096,
"ImageBase": "0Ox400000",
"Heap Commit Size": 4096,
"Heap Reserve Size": 1048576,
"Machine Type": {
"Type": "IMAGE_FILE_MACHINE_ I386", I
ST 330
}s
"Rich Header": { "
"Checksum": 652346176,
"Hashes": {
"SHA1": "4ebbf2e70992243e0fad5alleb5dd74afa790el10",
"SHA256": "77079f70f0ad4b3326a7f31f8ded4d73587512cfc63739d6e10f98dbe81bcbd4bc™, I

rule type is_email

{
meta:
scan_modules = "META EMAIL EXPLODE_ EMAIL"
file_type = "eml"
strings:
$from = "From "
$received = "\xO@aReceived:"
$return = "\x@aReturn-Path:"
condition:
(not ext_sourceModule contains "EXPLODE_EMAIL") and
(($from at @) or
($received in (0 .. 2048)) or
($return in (0 .. 2048)))
}

rule type is_zip

{
meta:
scan_modules = "EXPLODE_ZIP(filelimit=1000)"
file_type = "zip"
condition:
uint32(0) == 0x04034b50 and not uint32(4) == 0x00060014
}

rule type is _mz

{
meta:
scan_modules = "META_PE"
file_type = "pe"
condition:
uintl6(@) == ©x5a4d
and not ext_sourceModule contains "META_PE"
}

Why Laika BOSS? _

Community Platform/Sharing Vision
Community development, support of core framework]

Modules can be shared at all levels

Weaknesses
Python 2

Often not pythonic (ex. test cases)

Submissions API, queueing, logging, etc. could be more modular

Alternatives
stoQ I
Strelka
File Scanning Framework (FSF)

16

Installation

Install dependencies (depends slightly on Linux version)

Download and use Laika BOSS

Module Development _

Modules have 3 primary actions
Extract Metadata (META_*)

Decode subfiles (EXPLODE_*)
Flag (~alert) conditions (SCAN_*)

Secondary Actions
Format/Log/Store data (LOG_*, STORE_*)

Correlations/Lookups (LOOKUP_*)

D laikaboss/meta_hash.py at maste X -+

<« C O & GitHub, Inc. [US] | https://github.com/Imco/laikaboss/blob/master/laikaboss/modules/meta_hash.py

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

#
#
#
#
Unless required by applicable law or agreed to in writing, software
=
#
=
#
=

from laikaboss.si_module import SI_MODULE
import ssdeep

import hashlib

class META_HASH(SI_MODULE):

def _init (self,):
self.module_name = "META_HASH"

def run(self, scanObject, result, depth, args):
moduleResult = []
metaDict = {}
metaDict["'md5"] hashlib.md5(scanObject.buffer).hexdigest()
metaDict["SHAL'] hashlib.shal{scanObject.buffer).hexdigest()
#metaDict["SHA224"] = hashlib.sha224(scanObject.buffer).hexdigest()
metaDict['SHA256'] = hashlib.sha256(scanObject.buffer).hexdigest()
#metaDict["SHA384"] hashlib.sha384(scanObject.buffer).hexdigest()
metaDict['SHA512'] = hashlib.sha512(scanObject.buffer).hexdigest()
metaDict['ssdeep'] = ssdeep.hash(scanObject.buffer)

scanObject.addMetadata(self.module name, "HASHES", metaDict)

return moduleResult

O laikaboss/decode_hasefd.py atr X -+

<« cC O & GitHub, Inc. [US] | https://github.com/Imco/laikaboss/blob/master/laikaboss/modules/decode_base64.py

30 lines (28 sloc) 1.13 KB Raw = Blame | History

Copyright 2015 Lockheed Martin Corporation

Licensed under the Apache License, Version 2.8 (the “License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS™ BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

#*
i3
#
i+
i
#
#
#
#
#
#
3
#*
i

import basebtd
from laikaboss.objectmodel import ModuleObject, ExternalVars

from laikaboss.si_module import SI_MODULE

class DECODE_BASE64(SI_MODULE):
def __init_ (self,):
self.module _name = "DECODE_BASEG4™
def _run(self, scanObject, result, depth, args):
moduleResult = []
try:
decoded = basebs.bbddecode(scanObject.buffer)
moduleResult.append(ModuleObject(buffer=decoded, externalVars=ExternalVars(filename="d_base6d_#%s" % len(decoded))))
return moduleResult
except:

raise

Q laikaboss/scan_clamav.py at mas X +

< C O @ GitHub, Inc. [US] | https://github.com/Imco/laikaboss/blob/master/laikaboss/modules/scan_clamav.py

moduleResult = []

unix_socket = str(get_option(args, "unixsocket', 'scanclamavunixsocket', */var/run/clamav/clamd.ctl"})

max_bytes = int(get_option(args, 'maxbytes’, "scanclamavmaxbytes', 2000000@))

Connect to daemon
if not self.clam:
try:
self.clam = pyclamd.ClamdUnixSocket(filename=unix_socket)
except IOError:
logging.debug(' I0Error: Cannot connect to clamd unix socket file')
scan0Object.addMetadata(self.module_name, 'Error', "IOError: clamd socket')

raise

Scan the buffer with clamav
if max_bytes <=

clam_result self.clam.scan_stream(scanObject.buffer)
else:

clam_result = self.clam.scan_stream(str(buffer(scanObject.buffer, @, max_bytes)))

Process a result
if clam_result:
status, virusname = clam_result[stream’]
scanObject.addFlag("¥%s:%s" % (self.flag prefix, str(virusname)))
except ValueError as e:
scanObject.addMetadata(self.module_name, 'Error’, "ValueError (BufferToolong): %s' % str(e))
except IOError as e:

vogr

scanObject.addMetadata(self.module name, 'Error’, "IOError (ScanError): %s' % str(e))

return moduleResult

21

Dispatching _

Use Yara signatures to determine which modules to run on a given (sub)file
Include some metadata to increase flexibility I

Primary Dispatch (dispatch.yara)
Runs on files

Most signatures based on file magic number

Secondary Dispatch (conditional-dispatch.yara)

Runs on concatenation of flags (allows running modules based on detections)

Most signatures based on metadata or flags

Q laikaboss/dispaich.yara at maste: X +

&« cC O @ GitHub, Inc. [US] | https://github.com/Imco/laikaboss/blob/master/etc/framework/dispatch.yara

PE File Grouping-------------c-ommmmmmmmmmmmmn e o |
rule type_is_mz
i
meta:
scan_modules = "META_PE"
file_type = "pe"
condition:
uintle(8) == @x5add

and not ext_sourceModule contains "META_PE™

rule type_is_zip
{
meta:
scan_modules = "EXPLODE ZIP(filelimit=1@68)"
file type = “zip”
condition:

uint32(8) == @x04834b5@ and not uwint32(4) == Ox08060014

rule type_is_rar
{
meta:
scan_modules = "EXPLODE_RAR(filelimit=1886)"
file type = "rar”
strings:
%a = { 52 61 72 21 1A @7 @0 }
condition:

$a at @

23

Flags _

Concise tags indicative of specific conditions

Should be related to potential maliciousness, often loosely]
But not necessarily high fidelity

Sometimes closely tied to scanning errors, etc.

Examples
yr:backdoor_abc
pdf:url
rar:BYTE_LIMITED_EXCEEDED
pdf:PDFNotlmplementedError

x509:nfo:self_signed_cert

24

Flags

Middle ground between metadata and binary alert

Allows for abstraction of conditions and actions

Module/Signature authors focus on identifying relevant conditions

Not requited to know and maintain alert/block worthiness

Special roles 1n LB:

Provided as an input for conditional dispatching

Use by Dispositioner to determine disposition (action: alert or block)

25

Dispositioner _

Module used to convert flags into end action (alert or block)

Only flags, not metadata generally or file content

Configured using yara
yara runs on space separated list of flag rollup (all flags from children objects)

Supports arbitrary outcomes

Recommend one alert level per alerting class

“Deny” used by clients (milter) to block content

O laikaboss/disposition.yara at ma: X +

<« C 0 @ GitHub, Inc. [US] | https://github.com/Imco/laikaboss/blob/master/etc/modules/disposition.yara

31 lines (26 sloc) 724 Bytes

* Overview
* This file is used by the DISPOSITIONER module to determine the outcome of a
scan. It takes all of the flags from the current cbject as well as any
descendent objects and combines them into a space separated list. The rules

in this file run against that list.

rule Deny
{
strings:
$backdoor family 1 = “"backdoor family 1%
$exploit_CVE_2015_1337 = "exploit CVE_29815 1337
$info_1 = “informational sig 1"
$susp_1 = "suspicious_sig 1"
condition:
any of ($backdoor_*) or
any of ($exploit *) or
($info_1 and %susp_1)

rule Alert
{
strings:
$susp_1 = "suspicious_sig 1"
condition:

Ssusp_1

