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Tensor Decomposition: A Mathematical Tool
for Analysis of Tensor Data
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Express the tensor as the
I

sum of meaningful parts,
which is the starting
point for data analysis
activities

Ill

r Mathematics play a role in....
• Defining the error metric
• Developing efficient algorithms

Includes visualization,
clustering, filling in
missing entries, etc.

Related Concepts
for Matrices

• Singular value
decomposition (SVD)

• Principal component
analysis (PCA)

• Independent component
analysis (ICA)

• Nonnegative matrix
factorization (NMF)

• Sparse matrix
factorization

• Matrix completion
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Break Tensor into Understandable Parts...
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Data Tensor
ni x n2 x n3

m

Model Tensor
ni x n2 x n3 ni x n2 x n3 ni x n2 x n3

+

Key: The parts have structure!

• • • +

ni x n2 x n3
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Rank-1 Tensors are the "Parts"
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Given d vectors:

ak E Rnk for k

The outer product is

93 = a1 0 a2 • • • 0 ad E 
Rn1 x n2 x • • • x nd

WLOG, n = nl = ••• = nd

nd data

Simpler

Pa rt

93
 v
nl x n2 x n3

dn data

a1

93(ii 1 22, 23) — al (il) a2(i2) a3(i3)

a2
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CANDECOMP/PARAFAC (CP) Tensor
Factorization Uncovers the Rank-1 Parts
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Images are three-
way (d = 3), but
assume all tensors

are of size

x n2 x • • • x nd

For
convenience,

define

n = n k

Pae-a

/  /

x

d-way data
tensor of

size nd

Zow-iewri Add

d-way low-rank
model tensor of size

nd and rank r ,
nrd storage

r

X M where M =

Low-rank:

Factor matrices:

rank(M) < r < nd

Ak E

rank-one
component

j = 1

+ • • • +

rank-one
component
j = 2

rank-one
component
j=r

Ai(:, .1) A2(:, j) 0 • • • o Ad(:,

facto- /

Atekes

nxrforkE{1,...,d}
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Standard CP: Sum of Squares Error (SSE)
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x

St
an

da
rd

 C
P
 

+

min F(X, M)
icc2

s.t. rank(M) < r

Shorthand for element of data tensor:

xi = x(i1, i2, . . . , id)

Element of model low-rank tensor:

M •- H Ak (ik, j)
j=1 k=1

(defined in terms of factor matrices)

= set of all nd elements in tensor

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970
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Generalized CP (GCP)
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x +

min F(X, M) >-2 f(xi, Tni)
ics2

s.t. rank(M) < r
1

, Why?

• SSE: maximum likelihood
estimate (MLE) for Gaussian
distribution

Xi= ini+ 6, E r`-) N(0, a)

Xi r•-1 Ar(mi, a)

• Different MLEs for different
distributions

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970

— Poisson (counts)
— Bernoulli (binary)

4/13/2019 Kolda - Foundations of Data Science, Purdue



Probability Distribution
Maximum Likelihood Estimator
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Data Value "Natural" Parameter Model Value

1
x2 p(xil0i) where £(02) = mi

\
Link Function

Probability Distribution Function (PDF)

or Probability Mass Function (PMF)

min F (X , M)
ics2

s.t. rank(M) < r

f (xi, mi)

/

•

Maximize

Likelihood of

Data Tensor

IT p(xi,02)
icc2

..11.. ==

*
Maximize

Log-Likelihood

iES2

logp(x2,02)

•-:-----------,.._,----,..------------------

Given PDF/PMF p(xl9) and link

i function f(9), GCP MLE by minimizing

= — logp(x,f-1(m))

******%.............••••••"............./..........0.....

4/13/2019 Kolda - Foundations of Data Science, Purdue 8



Gaussian MLE (Standard CP)
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PDF for Normal Distribution

ep(x ia, a) (x 2 / 2,2/4

-V270-2

Negative log-likelihood:

Eliminate natural parameter
via link function:

Eliminate constants:

and

r
Link Function

Tit = 11,

a constant
L  J

— logp(4, a) (x—u)2
2a-2 + 2 log(270-2)

70

60

50

,40
E
x 
30

f (x, rn) = (x2-0."21 )2 + 2 log(27a2) 20

f (X, TO = (X — 
m)2

Hong, Kolda, Duersch, arXiv, 2018

10

- x = -2.0

- x = 0.0

- x = 3.0

-2 0 2 4

Model Value (m)

/

6
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Bernoulli MLE with Odds Link (Binary Data)
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Bernoulli random variable

x E {OM

= probability of a 1P

p(x 1 p) = px (1 _ p)(1—x) 
, x e {0,1}

b.bc' ~(p) =
0 .*\> f-1(rn)

P1(1— P)

m/(1+7-n)

Odds (m) Probability (p)

10

[ PMF for Bernoulli Distribution

p(x 1 p) = lox (1 — 10)(l—x)

x e {0,1}

Negative log-likelihood:

— log p(x

and

Link Function

m =  p
(1 — P)

p) = log  
1 

x log  p
1 — p 1 — p

Eliminate natural parameter
via link function:

f (x,m) = log(1 + rn) — x log rn, for rn, > 0

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli MLE with Odds Link (Binary Data)
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% Bernoulli random variable

x E {OM

p = probability of a 1

p(x 1 p) = px (1 _ p)(1-x) , x e { 0, 1}

2 4

Model Value (m)

6

[ PMF for Bernoulli Distribution

p(x 1 p) = px (1 - 10)(1-x)
x e { 0, 1 }

Negative log-likelihood:

- log p(x

and

Link Function

rn =  p
(I- - 10)

p) = log  
1 

x log  p
1 - p 1 - p

Eliminate natural parameter
via link function:

f (x , rn) = log(1 + rn) - x log rn, for rn > 0

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli MLE with Logit Link (Binary Data)
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% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 i9) = lox (1- - p)(1-x) 1 x E { 0, 1 }
A\t‘

\00Y° ob.6 f (p) = log Co 1 (1 - p))

c)"'4V t_1(771) = ern / (1 + en)

Log-Odds(m) Probability (p)

o

1.39

2.30

[ PMF for Bernoulli Distribution

p(xl p) = px (1 - 10)(1-x)
xe {0,1}

Negative log-likelihood:

- log p(x

and

r
Link Function

rn = log (1Pp)

L  J

p) = log  
1 

x log  p
1 - p 1 - p

Eliminate natural parameter
via link function:

f (x , m) = log(1 + ern) - xrn for rn E

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli MLE with Logit Link (Binary Data)
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5

4

--- 3
E
x 
'.2

1

0
-4

% Bernoulli random variable

x E {011}

p = probability of a 1

p(x 1 p) = lox (1 — p)(1-x) 1 x E { 0, 1 }

-2 0 2

Model Value (m)

4

[ PMF for Bernoulli Distribution

p(x 1 p) = px (1 — 10)(1-x)
x E { 0, 1 }

Negative log-likelihood:

— log p(x

and

r
Link Function

rn = log (1Pp)

L  J

p) = log  
1 

x log  p
1 — p 1 — p

Eliminate natural parameter
via link function:

f (x,rn) = log(1 + ern) — xrn for rn E

Hong, Kolda, Duersch, arXiv, 2018
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Sampling of Loss Functions
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30

2

1 0

Gaussian

x= -1.0
x= 0.0
x= 1.0

Standard CP
, / /

0  
-5 0

m

Bernoulli - Odds Lin

5

4

3

4-
2

1

x= 0.0
x= 1.0

Binary
(Odds Link)
m > 0

2 4

m

2.5

2

0

Huber (0=0.25)

/

FRobust"
A.Nwl

-5 0

m

, , ,

5

5 
Bernoulli - Logit Link

4

1

o
-5

Binary/
(Logit Link)

0

m
5

10

8

1 5

1 0

5

Gamma

x= 0.3
x= 1.0
x= 1.8

2

1 0

8

6

4

2

0

Nonnegative
Data
m > 0

Poisson

— x= 1.0
— x= 3.0
 x- 5.0

2 4

m

Rayleigh
20
Beta Divergence (f3=0.5)

1 5

E 1 0

2

Nonnegative
Data
m > 0

111

1 0 
Poisson - Log Link

Count Data
(identity Link)
m > 0

x= 0.3
x= 1 .0
x= 1 .8

Nonnegative
Data

(not MLE)
m > 0

2 4 6

m

1 0
Negative Binomial (r=3)

— x= 1.0
8 — x= 3.0

x= 5.0

6

Count Data
(Log Link) -

0

"Failure"
Count Data
(Odds Link)

2 4 6 0 2 4 6

m m
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In Neuroscience, Tensor Decomposition
Uncovers Patterns in Neuron Activity
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Trial 50 Trial 150 Trial 250

282 neurons x 111 time bins x 300 trials
Williams et al., Neuron, 2018

00 Trials over 5 Days

 Start West

Conditions Swap Twice

TilliPruth

Turn Northi

Turn South

Kolda - Foundations of Data Science, Purdue 15



Example Neuron Activity
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Thin lines

show 300

individual

trials

Thick line is

average

1

0 5

0

0 5

0

Neuron 26

20 40 60 80

Neuron 117

20 40 60 80

Neuron 212

1

0 5

0
100 20 40 60 80

100 20 40 60 80

0.5

0
60 80 100 20 40 60 80

Hong, Kolda, Duersch, arXiv, 2018

1
Neuron 82

100 20 40 60 80

Neuron 176

100 20 40 60 80

1

0.5

0

Neuron 273

100

100

100 20 40 60 80 100
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Neuron Factor Vector Visualized as Bar Chart
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al

x

_„
1 b

\ 
+ 

71 1 b2
+ • • • + 

br

Neuron Modes Plotted as a Bar Chart

(Red Lines Correspond to Examples in Previous Slide)

ci

time
a2 ar

Hong, Kolda, Duersch, arXiv, 2018
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Time Factor Vector Visualized as Line
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b 1

Time (within trial) Plotted as a Line

(Dashed Line is Zero)

Hong, Kolda, Duersch, arXiv, 2018
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Trial Factor Vector Visualized as
Color-Coded Scatter Plot
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.

i
Rule

Change

Trial Plotted as Scatter Graph Rule
Right turn = Green Change
Left turn = Orange

Filled = Reward

Hong, Kolda, Duersch, arXiv, 2018
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Visualization of CP Tensor Decomposition
Shows the Factors (Vectors)
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Neuron (_!caled) 

1 dhl 11 1

o

cu

Time Trial (Green/Orange = Turn iRight/Left, Reward = Filled)
••••••••=60•Napti legniMertillIEVIVII "41.0~11.401MOVINIO.

Hong, Kolda, Duersch, arXiv, 2018
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"Standard" CP Decomposition of Mouse
Data, aka Gaussian
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Wd

Neuron (scaledL 

dl I killjbbLill I li CJW ald 61

71 PI )0 

4

5

6

8

1  b. .1,1111.

ilwitigiu4,11.1

1111,,Ad

L iii1V)
, I 11 )0Air1'1,

14.1 b IL .,I/6

1,L11, J11p,

„it a-rJ  1Y Or

J. L_LL  liJ 4.64.41

Time Trial (Green/Orange = Turn Right/Left, Reward = Filled)
01111111111111114111111111161.1111111. •"1011"111114P.41.110•11100wr

.
1011100/.11%111 :09.1"41101VIVAISSIT S.1110 Sigle
410 • se- • 16)...clj - 0 0  lib  AO e  gt  Ir 41  p *a It

ibieftwolallimpall.k,A942$000 ° 9) 0

• "servaieweamme, 

1.11"111/041044~44 #1468414:0864‘01• 
 -A A.

0 50 100 150 200 250 0 50 100 0

..eadtorNiranot
50 100 150 200 250 300
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CP Tensor Decomposition "Sees" Reward
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8

Ltd tilt Olt dd 1 ,t1,1 1 ,[1,

Neuron (_!caled) 

161 I 11 killji.1411 I it I. 111cl 11,1 1110 id1111

)t1 r, 

I/6li
 14.1 . It_LL  L 4.64.41

Time Trial (Green/Orange = Turn iRight/Left, Reward = Filled)
•- - -Tageotvt,?-mpour leValo — wows,

•"Vegav401,4.- -•-"yrwilerstrWilltur; ••110 SWolvvemft.,• • se • 0,...,1;  A.  A.  * P ••• w •  It

Rae. "Iltb .

„4,otosivegi%oletiese‘ivaioiosab:40610
%tab&

0 50 100 150 200 250 0 50 100 0

4.6

, *AN,

50 100 150 200 250 300
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CP Tensor Decomposition "Sees" Turn
Direction
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euron scaled

killjbbLill I )1c,m, 1,111111 61

r irM lir 1/ /
111 r'7T-11

Time Trial (Green/Orange = Turn Right/Left, Reward = Filled)

,,7 

•- - -Tageotvt,?-mpour leVolo — wows,

•"Vegav4 1,4.- Arly01411.0440.61T e. Wolgouvema%.,
• • sr • o  A.  * ito  w •  It

1/4111TIPI 0 • 1~110111111111 eres4 ••••wwwiftWalsigig;
0 

0

Turn Direction

Co o 0
o

8 161
lp b th .11.111 11.-111 011. 111111.1JI 1.11+.1, , I J 

orivemito?
aiiet

50 100 150 200 250 0 50 100 0 50 100 150 200 250 300
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CP Tensor Decomposition Can be Tough to
Interpret due to Negative Entries
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till ill,

Neuron (scaledL 

dl I killjbbLill I li 

4

5

6

8

I
1110f'ir '1'1" 111

b.

ilwitigiu4,11.1

ALy .11V'f.rI l l 1'1
,

1 
I 4.1 b IL . -.._.1,11,jkla-att.

)0

.1,1111. I _61 1a,11,J11p,

„it a-rJ  r'v

yLW.4. 11L~L_LWL  J. II iriblawil

Time Trial (Green/Orange = Turn Right/Left, Reward = Filled)
Orillbsimalliallp00110 "40001110.01•1000ftwir

.
1011100.11%41/111 :09.1"41110,1%1114,00SIT S.1111, Ole
Ai • sp- • 16)...clj - 0 0  lib  AO •  *  Ir 41  p *a it

ibieftwoolalARIPI.k,A942$000 ° ' 9D, 0
ourvise14.1011~0weri" ••c

"4"11:44411.6104.0%,44 #14684114:0814‘001• 
-A A.

..0•6:101.414Not
0 50 100 150 200 250 0 50 100 0 50 100 150 200 250 300

Reward!

Turn left

Turn right

Turn
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GCP Decomposition with Beta Divergence
(fl = O. 5)
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1

2

3

4

5

6

7

8

Neuron (scaled
, I

I

1,6 ,,., 11,1 ,, ..,i1 ..11,,1. ,i 11.11 JL II/LLiiii.Lo ,,,.., III, „11 ,.,,, oi,.11.11111,1 L 1,IIII1IL1LIie I IIt1J,11ll.1.1ili 1

1,1 L oLL L 

an] I „Ai. Lk, .11 I , 1,

,L LL 1

t.11111,111

1

tbk Ili,. I. 1 .1 id ... 11 t „I .1 .., 11. „. 1, ,, 1111.1.1 ,11 

.L I LI ilk 11 61 IL•Liaill di 114 11.11 L I +Li L I, ,ti 1 .1 1„, ,I,I , 

0 50 100 150 200 250

Time Trial (Gren/Orangie = Turn iRight/Left, Reward = Filled)

0 50

4041,41Priv4W9Afrovlat". Ale"
 Apse  ,Lautt.a.at 

k
iligaialm

epill11185118moimoi Ceposeitiogiiteigi"eittill,fil,1141010.

  •  
4    

Awawativiest • ompriorioriquiso evwsestorwavios:
11•Iimibs. 9400f4r•{.N•e* .1•6•wwetilocirwo....00liii  ow* 

limmosimas
• 

, •
, o' • o al 

1
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o

. 411044t6?*4014414' Sabliblik"14408014°01011N114"4
rt • 

111411016WOOMANN‘ftelb0 0
0.. 0 0

46).44 *W.

o o

Reward!

Vonealittqwbreagft,i Tu rn right
***A*Ert*****

o 0 :to ,t:cougatail0 o0 141.4.1.1 cb) o ?_)

•

ihimmowillaingeel...s....•..1....1141P.001111101141MNION111:COBINIef . .2 

oo

• 11P441104$4641Aremiig
••• •• •

O
O
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• •

• O Sio •• • t
• 0 • 

•• e • o•
• • • • olo o 0 • ••• ••• ••• •421 o• 

4600•0Seo•

° • • illiii"PAIGANWIAINak

100 0 50 100 150 200 250

No reward!

Turn left

300
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Regression Using GCP Factors on Trial Mode
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Trial Factor Matrix is 300 x 8

.6117.-1.451PM111671117...1 ..n• 

• r•-fr, ft•,—frw"*-1

Nv46.44.4"4..i4

iceottiFoc, " 6re, ,b`
ta.......onbirdilL..keisemilbaraorottiNS:140.•dik

- el 

; • • '9 • •4' .0.
=..c'_°cn 

• • I::•,v,:e.g.-silaawmt,

0 50 100 150 200 250 300

Look at predicting turn and reward.

Split into two groups of 150 trials.

Train regression model with 1st group.

Test with 2nd group.

Repeat 100 times.

min
0

••• test

A3aino ytrain

[At3esto > 0.5]

Regression Errors

1600

1400

1200

1000

800

600

400

200

0

.c• e, \\ tb• •C
• 12). C. .4) ,. t-cCC\ oe'

ed.k.\ \e,
?;•.\' •e'''J•c' •C`b A

'666 • z 4S`• 0
*e

,c'b.
<Zi2'

• Turn • Reward
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Generalized Canonical Polyadic (GCP)
Tensor Decomposition
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x

d-way data
tensor of

size nd

/ /  /

> m =

d-way low-rank rank-one
model tensor of size component

nd and rank r j = 1

X ,-f- M where M =

Low-rank:

Factor matrices:

r

±

l_y_l

rank-one
component
j = 2

A 1 (: , .1) 0 A2 (:, .i)
3

rank(M) < r < Tid

Ak E 11Z

rank-one
component

j = r

0 . . . 0 A d (:, .1)

Th" for k E { 1, . • • , d }

WLOG, n = nl = ••• = nd 1

o_
o
0

min F(X, M) --
iEc2

s.t. rank(M) < r

f (xi, mi)

i = multi-index
SI = all indices

• Standard CP [Hitchcock, 1927; Carrol &

Chang, 1970; Harshman, 1970]

f (x , m) = (x —m)2

• Poisson CP (lndentity Link) [Welling &

Webber, 2001; Chi & Kolda, 2009]

f (x , m) = m — x log m

• Logistic CP, etc. [Hong, Kolda, Duersch,

2018]

f (x , m) = log(m + 1) — x log(m)

4/13/2019 Kolda - Foundations of Data Science, Purdue



Gradient-based Optimization
for Fitting the GCP Model
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a. min F(X, M)
iEs2

s.t. rank(M) < r

f (xi, mi)

Define: Elementwise partial gradient tensor,
same size as data tensor = nd

f
y, =  (xi mi)

Define: Khatri-Rao product in all modes but
one of size nd-1 x r

Zk Ad 0 • • ® Ak+i 0 Ak—i ® • • ®

Gradients computed via a sequence of MTTKRPs:

G 
OF

k  = Y(k)Zk
OAk

/
gradient for mode
k factor matrix of

size n x r

mn)ER_,0
tensor unfolded in
mode k into matrix

of size n x

MTTKRPs can be computed efficiently...
• Bader & Kolda, SISC, 2007 — Dense and sparse

• Phan, Tichavsky, Cichocki, 2013 — Sequence

• Smith et al., IPDPS 2015 — Sparse
• Kaya & Ucar, SC 2015 — Sparse

• Li et al., IPDPS 2017 — Sparse

• Hayashi et al., 2017 — Dense
• Ballard, Knight, Rouse, 2017 — Dense

Kolda - Foundations of Data Science, Purdue 28



Stochastic Gradient Descent (SGD) for GCP
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c
o
ra

min f (x)

Gradient Descent (GD)
a = learning rate

x
(t+1) 

= x
(0 

— a g(t)

1
-ii

Stochastic Gradient Descent (SGD)

P. x(t+1) = x(t) — a g- (t)

P. 
Ere)] g(t) _ v f (x(t))

P.

P.

L
Adam (Kingma & Ba, 2015)

Adaptive momentum SGD J

Standard gradient G k = Y (k) Z k

0 f ,
y 

OM
i = V i , mi)

-   
Stochastic gradien 

a k = 7 - (k)Zk

. .
• ' •..

Cost: 0 (rnd) flops

Cost: 0 (rs) flops -.

Choose stochastic sparse Y-tensor

_.-Lirm ='
such that

nnz( * < s < Thd

By linearity of expectation:

 1

-4:1[ak] = Gk

_}

4/13/2019 Kolda - Foundations of Data Science, Purdue 29



Uniform Sampling
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Goal: Random sparse tensor of size nd that equals the "Y-tensor" in expectation

i.  %

I Sample s << nd random tensor 1
entries (with replacement)

%%, 

ši # times i sampled
dn

Yi = si • ' Yis

E Ši = s
icc,

i E S2

6(ši) < s

Claim:

Proof:

EN =
'rid

S
Yi Yi

Choosing s, the number of sampled elements...

• Choose s = 0(rn)

• Gradient = O(rs) = 0(r2n) versus 0(rnd)

Downside...

• If data tensor is sparse, few entries
corresponding to nonzeros will be chosen
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Intuition: Stratified 0/1 Sampling Decreases
Variance

Sandia
National
Laboratories

Needell, Srebro, and Ward (2013) justify biased sampling toward functionals with higher Lipschitz smoothness

constants to reduce the variance in the stochastic gradient. ]
In our case, the functionals correspond to fi = f (xi, mi), and we contend that in many cases the functionals with

xi = 0 have lower Lipschitz smoothness constants and therefore needn't be sampled as often as the nonzeros. ]
1C'onsider Bernoulli with odds link: f (x , rri,) log(1 + TO — x log fin

0 f 

am 
(0, m)

a f 
arn (1, m) =

1

m + 1

— 1

rn2 + m

L < 1

L unbounded as m 0
2 4

Model Value (m)

6
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Stratified 0/1 Sampling
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-M-

Goal: Random sparse tensor of size nd that equals the "Y-tensor" in expectation

i For each partition -e, sample st « lad random tensor entries
from .fte (with replacement)

ši = // times i sampled

,7, 3, P el 
Ht = -t • • yi where i E Ue

st

o
a)
_c
I—

t

I
 . i

Claim:

Proof:

'1-R =

IE[gi] =  st where i e Qf
Pfl in 1

-=1:1[-fiii = E[ši] • /"-ei • yi = yist

Explicit List

Q2
zeros

Implicit List (Requires Rejection Sampling)
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Semi-Stratified 0/1 Sampling
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Goal: Random sparse tensor of size nd that equals the "Y-tensor" in expectation

Sample s random nonzero tensor entries (with replacement)
and q random entries (with replacement) and assume zero

gi = times i sampled as nonzero

qi = // times i sampled as "zero"

Yi =   (yi — ei) + 4i •
d

ei where ei = f (0, m,i)
nnz(X)

s r

F-

Claim: -4.1_,M =

Proof: if xi = 0, Erfii]

if xi 0,'1Hýd =

nd
= z-Oi] • — ei

q
nnz(X)

q nd
•

nd

(yi — ei)s

yi = yi

Thd
;__1.4 1 i] • — Ci

q
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GCP with Stochastic Optimization
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Adam (Kingma & Ba, 2015) with
default parameters and a few
tweaks

Use stochastic gradient with a small
number of new samples at each
iteration
Group iterations into epochs of 1000
iterations
Estimate function values using a large
and fixed set of sampled indices after
each epoch

If function value ceases to improve,
reduce learning rate (a = 0.001) by a
factor of 10
Once function value ceases to improve
again, quit

0.7

0.6

.„ 0.5
Ln
o
u
01
c
c
rts

-" - 0.4

0.3

MNIST Logistic Regression

0 
20

— AdaGrad

— SGDNesterov

— Adam

5 10 15 20 25 30 35 40 45
iterations over entire dataset

Image from Kingma & Ba, arXiv:1412.6980v9
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For Sparse Tensors, Suggest
# Samples = # Nonzeros / # Epoch lters
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1.8

1.75

• 1.7
CI

co 1.65

1.6

7_, 1.55

ci)
o 1.5
-C3
a)

1.45

1.4
UJ

1.35

1.3

x106 Tensor size 500 x 400 x 300 and rank r=5 with 356990 nonzeros

Negative
Log-

-Likelihood
of Actual

-Generating
- Factors

Factors 1-4 are each 10% dense, yielding half of the nonzeros
Factor 5 is small constant (i.e., noise), yielding half of the nonzeros

1000 iterations per epoch

  •

'441Wk,,q
-

g-samples=36

g-samples=179

g-samples=357

g-samples=1785

g-samples=3570

0 5 10 15 20 25

Time (sec)

30 35 40 45 50
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Uniform Sampling is Worse than Stratified
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3.08

Vi
3.07

2 3. 06a_ 
E
cup) 3.05

c.
0
c) 3.04
0

7_, 3.03
cn

8 3.02
-a
2 3.01

'TY) 3
w

2.99

2.98

x 106
1 1 1 1 1 1  1 

Uniform
Stratified

Semi-Stratified =

Tensor of Size 300 x 250 x 200, rank 5

with 790K nonzeros (5% dense)

# samples = 1580 (790 x 2)

-..--.--6-.--.--.."1.-...-0--•-•--•

..--r•-•--..--,..._
._._•

Negative Log-Likelihood

of Actual Generating

Factors

0 20 40 60 80 100

Time (sec)

120 140 160 180 200
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Chicago Crime Data
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• 4-way count tensor
6,186 Days

24 Hours of the Day

77 Community Areas

32 Crime Types

Non-zeros: 5,330,673
Storage: 0.21GB for sparse tensor

Distribution of entries
0: 98.54%

1: 1.33%

> 2: 0.12%

Using binary version (every nonzero changed to 1)

• Obtained from FROSTT
(http://frosttio/tensors/chicago-crimen

- Data originally from Chicago Data Portal
(https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2)

GCP-Binary

Rank = 10

s = 30,000

f (x, nt) = log(m + 1) — x log(m)

—800 seconds

City of Chicago Community Areas and 'Sides' 
• ,• 

[llkagO"SIt~N

D rig MI* S•de

▪ Northwee Se,

El North Sew

O $11,ag

• Central

O Saheb Side

%ntetwo.4 Sdr

• Fer SOM,,re See

▪ Ire Saul.wav 5440

Yds 1..X.11...11E.1

Paso p11.4) U7912
kwer aver chnto ant ho-rui
rrOntiort Wr-5413 II noli bol MR 5
Rg Siaryrylwrli FrrumnalVIrcrlol
Doting NalthArlirriarl MP% iggiMmikIN:tet

SS

I - -I

10 Polk=
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Factor #1
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0,06
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0,02

Date

rsa

0,5
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0.1

N.) N.) ro N) N.) N)
ci

0 0 0 CI Q 0 Q CI
1"1/4.) C.4 Crl CO 0

Hour of Day

r...) 140
0 CI C)

N) w 41.
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other offense
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go 400
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Factor #2
Sandia
National
Laboratodes

Date

D,D6

0,04

0,02

0
N.)

0,5

0,4

0,3

2

0 1

N.) N) N)
CD ▪ CI CI CI CI Q CI Q Q
CD CI CI CI CI Q CI CI
N.) c...) ui cr) 0:1 CO

Hour of Day

finn-Innll

E3 '12 '18 2.=

theft

deceptive practice

assault

criminal trespass
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criminal damage

O
N.) N.)
CI CI

411. 1.31

O

CT)
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h.<
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Factor #4
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Fa ctor #5
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Related Work
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■ SGD for Matrix Decomposition
Gemulla, Nijkamp, Hass, Sismanis, KDD'11 — Distributed SGD (DSGD) method:
Partition matrix into blocks, run parallel SGD on independent blocks, cycling
through the blocks in a way that ensures correctness. Only uses nonzero entries.
Zhuang, Chin, Juan, and Lin, RecSys'13 — Fast Parallel SGD (FPSGD) method: Matrix
factorization in shared memory environment. No theoretical analysis. Only uses
nonzero entries.

SGD for Tensor Decomposition
Mardani, Mateos, Giannakis, IEEE TSP 2015 — OnlineCP uses SGD for tensors that
are streaming, one slice at a time
Maehara, Hayashi, Kawarabayashi, AAAI-16 — Tensor can be written as sum or
average of a number of tensors. Proposes SGD plus several variations
Ge, Huang, Jin, and Yuan, CoLT 2015 consider SGD for symmetric tensor
decomposition

Tensor Sketching
Acar, Dunlavy, Kolda, Morup (CILS 2011) — For dense tensors, it is heuristically
possible to recover a full tensor decomposition with only a sketch of the data
Jain and Oh (NIPS 2014) and Bhojanapalli and Sanghavi (arXiv 2015) more
formally prove under what conditions sketching works, albeit with a focus on
orthogonal symmetric tensor decomposition
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Conclusions, Future Work,
References

■ GCP enables alternative loss functions, but...
Not amenable to scaling because gradient "dense"

Developed GCP stochastic gradient

With variations of stratified sampling for sparse tensors

Future work
Release for MATLAB Tensor Toolbox

Parallel implementation (with Eric Phipps — GenTen)

Distributed implementation (with Karen Devine)
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