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Tensor Decomposition: A Mathematical Tool @ o

for Analysis of Tensor Data

Express the tensor as the
sum of meaningful parts,
which is the starting

point for data analysis
activities

Mathematics play a role in....

Defining the error metric
Developing efficient algorithms

4/13/2019
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Includes visualization,
clustering, filling in
missing entries, etc.

Data

Analysis

Mathematical
Tool

Kolda - Foundations of Data Science, Purdue

Related Concepts
for Matrices

Singular value
decomposition (SVD)

Principal component
analysis (PCA)

Independent component
analysis (ICA)

Nonnegative matrix
factorization (NMF)

Sparse matrix
factorization

Matrix completion
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Break Tensor into Understandable Parts... i G

Data Tensor Model Tensor
1 X Ng X N3 N1 X No X N3 N1 X Ng X N3 N1 X Ng X N3 1 X Ng X N3

Key: The parts have structure!
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a4

?(il, ’i2, i3) — aj (21) a9 (ZQ) a3 (23)

Rank-1 Tensors are the “Parts”

Given d vectors:

ap

a, c R" fork=1,...,d

The outer product is

? — 3-1 OaZ « o Oad (o Rn1><n2><---><nd

N1 X Nng X N3

4/13/2019 Kolda - Foundations of Data Science, Purdue



CANDECOMP/PARAFAC (CP) Tensor @ﬁg;;gi:al_
Factorization Uncovers the Rank-1 Parts GRS S

Data Low-Funk, Hode!

/Images are three-\ / . / , g

way (d = 3), but
assume all tensors 4 N + T a et
are of size X | = . M B
N1 X Ng X -+ X Ny w b
\_ < |G /] J | ]
| |
d-way data d-way Iow—rank. rank-one rank-one rank-one
te.nsordof modgl tensor of size component component component
a N\ sizen n% and rank 7, ji=1 j=2 j=r
For ~ nrd storage
convenience,
define

xr%M where M:ZAl(:aj)OAQ(:7j)O°"OAd(:7j)

= 4 =1 fact,
n=g4d N J actor [
1;‘[ d Matrizes
Low-rank: rank(M) <r < n
L )

Factor matrices: Ajp € R™*" for ke {1,...,d}
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Standard CP: Sum of Squares Error (SSE) @lab'm"es
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Standard CP

min F(X, M) = Z(xz —my)?
A=
s.t. rank(M) < r
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Shorthand for element of data tensor:

Hi— :L‘(il,ig, T ,’l:d)

KEIement of model low-rank tensor: \

r d
mi = > | Ar(ix, J)

j=1k=1
K(defined in terms of factor matrices)/

( )

L Q = set of all n% elements in tensor

J

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970

Kolda - Foundations of Data Science, Purdue




Generalized CP (GCP)

4/13/2019

:x .,’?J\/’) M _ -+ NP . .

GCP

s.t. rank(M) < r

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970

Kolda - Foundations of Data Science, Purdue
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Why?

SSE: maximum likelihood
estimate (MLE) for Gaussian
distribution

T; =m; + €, € ~N(0,0)
CIS‘Z'NN(mi,O')

Different MLEs for different
distributions

— Poisson (counts)
— Bernoulli (binary)




Probability Distribution = @ e i
Maximum Likelihood Estimator Laboratories =

Data Value “Natural” Parameter Model Value o I‘Vla).(i;]iz.e; Bk "
l : l ! Likelihood of ; Ma.xirr?ize M
x; ~ p(x;|0;) where £(0;) = m; " DataTensor | ﬁ Log-Likelihood |
\ ’f »
: u E
/ Link Function : | | p(a:z-, 91) i logp L ) u
m (
Probability Distribution Function (PDF) =t L ;LEQ
or Probability Mass Function (PMF) o S —

Given PDF/PMF p(x|6) and link
function £(6), GCP MLE by minimizing

f(z,m) ~(m))

min F'(I, M) Zf (i, m;)

1€
s.t. rank(M) < r

GCP

= —logp(x, ¢

4/13/2019 Kolda - Foundations of Data Science, Purdue
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G alu SSia n M LE (Sta n d a rd C P) @ Laboratories V= &)

PDF for Normal Distribution Link Function 70 | — . 20
e~ (z—p)*/20° and m= [ 60 | o 28 /
p(z|p,0) = \/ 2 o constant —
210
50 3
2
. s . — 1 2 A4O
Negative log-likelihood: —log p(z|p, o) = <x2(;zb) T 5 log(2mo®) c
3
=307
. —m)? 1 2
Eliminate natural parameter flz,m) = (w%’";) + Llog(2m0?) 20 &
via link function:
10}
Eliminate constants: f(x,m) = (x —m) ) L -
-4 -2 0 2 4 6
Hong, Kolda, Duersch, arXiv, 2018 Model Value (m)

4/13/2019 Kolda - Foundations of Data Science, Purdue
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Link Function

Bernoulli MLE with Odds Link (Binary Data)

: Bernoulli random variable
g’e x € {0,1}

PMF for Bernoulli Distribution

(1—x)

p = probability of a 1 A = p{ (1 _}p) and | ) —
re 0,1
plz|p) =p*(1—-p)'™™, ze{0,1}
0689 lp)=p/(1-p) Negative log-likelihood:
; . ,
—logp(z|p) =log —— — rlog ——
gp(z|p) S BT,
% “ 20% Eliminate natural parameter
1 50% via link function:
4 80%
10 509 f(x,m) =log(l+m)—xzlogm for m >0

Hong, Kolda, Duersch, arXiv, 2018

4/13/2019 Kolda - Foundations of Data Science, Purdue
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Bernoulli MLE with Odds Link (Binary Data) @ ahoratores

: Bernoulli random variable
é x € {0,1}

PMF for Bernoulli Distribution

Link Function

_ T . (1—x)
p = probability of a 1 p|p)=p"(1=p) R m =
. re{0,1}
plz|p) =p*(1—-p)'™™, ze{0,1}
5 . .
—x=0.0 Negative log-likelihood:
4 —x =1.0/]
1
5 | —logp(:z:\,o):log——xlogL
TE? 1—0p 1—0p
25
=27 ] Eliminate natural parameter
via link function:
1 L
0 , , f(z,m)=1log(l4+m)—xlogm for m >0
0 2 4 6

Model Value (m) Hong, Kolda, Duersch, arXiv, 2018
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Link Function

Bernoulli MLE with Logit Link (Binary Data)

: Bernoulli random variable
g’e x € {0,1}

PMF for Bernoulli Distribution

(1—x)

p = probability of a 1 p(z|p)=p"(1=p) and mzlog(—lﬁ’T)
) re{0,1}
plz|p) =p*(1—-p)'™™, ze{0,1}
X, \
\9‘%0589 lp) = log(p/ (1-— P)) Negative log-likelihood:
' 1
~logp(z|p) = log —— — zlog ——
—p 1—p
-1.39 20% Eliminate natural parameter
0 50% via link function:
1.39 80%

flx,m) =log(l+e™)—am for meR

2.30 90%

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli MLE with Logit Link (Binary Data) @ ahoratores

: Bernoulli random variable
é x € {0,1}

PMF for Bernoulli Distribution

Link Function

_ x(1 _ A\(1—2)
= probability of a 1 p(z|p) = p*(1 —p) and m = log ~2
oP ! (1—p)
re{0,1}
p(x|p)=p"1-p)", ze{0,1}
-+ . . :
4 :i : (1)8 Negative log-likelihood:
1
—logp(x | p) = log —— — xlog ——

Eliminate natural parameter
via link function:

flx,m) =log(l+e™)—am for meR

4 -2 0 2 4

Model Value sm ! Hong, Kolda, Duersch, arXiv, 2018
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Sampling of Loss Functions

Gaussian
o o
x= 1.0
u\ /
E 200\, L
= | Standard CP
0 /
-5 0 5
m

Bernoulli - Odds Link

5 t
x= 0.0
4l x= 1.0
ES3 Binary
>< *
*, | (0dds Link) |
N m=20
\\\\
. el
0 2 4
m

4/13/2019

5 Bernoulli - Logit Link

Huber (A=0.25)

x=-1.0
\\ oy
\\ s
“Robust”
7
X
5 0 5

m

\ x= 0.0
\ X= 1.;)
Binary
(Logit Link)

f(x,m)
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™

10 ’ Gamma 10 Rayleigh 2Eeta Divergence (3=0.5)
8 x= 03] | 8 \ x= 0.3 x= 0.3
1 x= 1.0 x= 1.0 15 x= 1.0
6 \ x= 1.8 6 x= 1.8 x= 1.8
e l .
4| g : '\} 210\ Nonnegative
2 — l \_ R _ 4 Data
ol ¥‘/‘;:/fﬂ " 0 Nonnegative - |  (not MLE)
2 OI\;eia ive Data | m>0
) 0 ata m 2 0 0 2 4 6
m=0 m m
15 Poisson 10 Poisson - Lﬁg Link 1Blegative Binomial (r=3)
x= 1.0 \ x= 1.0 x= 1.0
10 x= 3.0 x= 3.0 8 x= 3.0
x= 5.0 5 x= 5.0 \ x= 5.0
. [ —~ 61| :
3 [ £ ' 1 epad »
2 w i o O Failure
0 Count Data Count Data
, (Log Link) (Odds Link)
+ Count Data | | |
-5 —_— a e T 0
o 2 4| (identitylink)y >, 4 o 0 2 4 6

m

m=0

m

Kolda - Foundations of Data Science, Purdue




In Neuroscience, Tensor Decomposition @ e,
Uncovers Patterns in Neuron Activity Laboratoies

Trial 50 Trial 150 Trial 250

o Turn South
* Turn North
* Turn South

282 neurons X 111 time bins X 300 trials
Williams et al., Neuron, 2018

4/13/2019 Kolda - Foundations of Data Science, Purdue
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Example Neuron Activity Laboratoie

Neuron 62

Neuron 26

|

Neuron 82

0.5 | 057 057

: i 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Thin lines

show 300
individual
trials

Thick line is
average

Neuron 249
. ’K J

0.5

20 40 60 80 100
Hong, Kolda, Duersch, arXiv, 2018

0
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Neuron Factor Vector Visualized as Bar Chart

™

a

4/13/2019

Neuron Modes Plotted as a Bar Chart
(Red Lines Correspond to Examples in Previous Slide)

neuron

time

/Cl /02 c
—= b, ‘—==Dbs /

- o Pr

La'r'

Hong, Kolda, Duersch, arXiv, 2018

Kolda - Foundations of Data Science, Purdue
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Time Factor Vector Visualized as Line @“‘“‘m""s !

.b1
,T~

Time (within trial) Plotted as a Line
(Dashed Line is Zero)

{{b\ /? C1 /Cz /Cr
I_—_ll b, ‘—==Dbs

~ - +oot "

neuron
&

L al la
time B Ap

Hong, Kolda, Duersch, arXiv, 2018
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Trial Factor Vector Visualized as @ e
Color-Coded Scatter Plot

Laboratories

Rule 'T Trial Plotted as Scatter Graph Rule
Change Right turn = Green Change
Left turn = Orange
Filled = Reward
Cl C
’é\’t} / / 2 /CT
‘== b ‘—==Dbs = b
o . @ M r
5 -+ 1 ==
§ X
Jal Ja
time 2 § Ar

Hong, Kolda, Duersch, arXiv, 2018
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Visualization of CP Tensor Decomposition @ ol
Shows the Factors (Vectors) Laboratories =%

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille

1 | | " | /’- o ¢
| I l I a]_ ¢ . A\/ b 1 C 1 | ] | |

Q
o
_|_

_|_

+

neuron
&=

Hong, Kolda, Duersch, arXiv, 2018
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“Standard” CP Decomposition of Mouse @ﬁ%ﬂﬂ‘ﬁm,
Data, aka Gaussian Laboratores

euron (scale ime rial (Green/Orange = Turn Right/Left, Reward = Fille
Wﬂt\ij@ gty S e ]
1 MMMMWMLW —\// i
| | bmw wwwm-* wm
o Ldu L do ; Ll |||I| L L \ L . g
1]'”1 ""I ) [t i Gl i ” ]"'r'l i | ll"" 'I" IT' “"'1 Ll L 1

st ‘ Ww
3 LM%#M%H —

6 mwlmmmwm ,,,Ii fulld
7 ol | | Ll L | J IL' | I W"‘I‘Wﬂ"ﬁ - ’q”"'.' -

sl Lot d ||| o all L
o l THY '[Tl I1 " 0 I L LU Lo | e -
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CP Tensor Decomposition “Sees” Reward

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille
W’fﬁf\i@] TN gy i ¥ e i)
1 WMMMM@WLMMMMM —\// i
T T T T b T , vl,uv‘jr"‘.il. T w T T 1
2 L] o L 1l \ ol P \ £ sp‘ 0 e a' . S F 3 ."0‘&“-, A
1I'|’l1 el B [ i i i Ir” LR | ’] ]""r‘['l ll‘l' 'l'l ]7" L Bl kL
3 T T T T T - — 1 T ./wﬂ."; ﬂ.'n \ T ’ T

Bk 1 L LA e -

|l] ALl Aoatdatlll ||” | ] .l ._ulll lnLJ |i“41....||| k
M I rl T ler ] |'| -y B jghet S r1‘|] T |—r II—-I" ITIT ]r Ir -“ = s

8 < . e

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300

7 1.'l ILL.
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CP Tensor Decomposition “Sees” Turn @ Natoral
Laboratories '

Direction
' Ieuron §Cae . . ime ria ret—::n rangle= urn[ 19 tl_eI . ewall' =ri e]
’ " | | l d” “ || | I S W;.W
: ; : : ' AV :
2 LITIL Jﬁll..rl,l,ﬂhI LFJJ s IHII ||| II TLULL].IWLIJI_.I SN . ¥ l!’-'.."‘;"""w %OWNW‘ % ’UW

1

T T T T T T T T T T 1
M o © W w

3 L Adals ;5 ‘ /—\ O o ' ]
LA N AL L e
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T 1
| l‘ £

Turn Direction

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300
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CP Tensor Decomposition Can be Tough to
Interpret due to Negative Entries

Sandia

™

Ly
I DL R
1
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Reward!

Turn left

Turn right

Turn

4/13/2019
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GCP Decomposition with Beta Divergence @ﬁgggﬁa,_
( ﬁ O 5) Laboratories

euron scae ime ria reen/orange = iurn nig Left, Reward = Fille

.Wm A A

209 L al...... ?.n.. ....... o,
T 1]

Reward!

o © S ..NM%'T Turn right

No reward!

Turn left

4/13/2019 Kolda - Foundations of Data Science, Purdue
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Regression Errors

Regression Using GCP Factors on Trial Mode

Trial Factor Matrix is 300 X 8

L‘ o 5 1600
q'.“‘l"_":.’"”'*'r*’”“e““‘ Rl 1400
e e WM[JAZTE -y 1200
AN YN 1000
yiot = [AF*B > 0.5] 800
600
400
200
0 = I ||
Look at predicting turn and reward. .
Split into two groups of 150 trials. B o& & & &
. . : 5 57 \g& &
Train regression model with 15t group. (5&\' ‘QQ} B °
Test with 2" group. ,bQ\
Repeat 100 times. Q,?’}

B Turn M Reward

4/13/2019 Kolda - Foundations of Data Science, Purdue



Generalized Canonical Polyadic (GCP)

Tensor Decomposition
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.

™

GCP

min F(X, M) = Zf Xq, 1)

1€

i = multi-index
Q) = all indices

s.t. rank(M) <r N

x Dz M - " T
y . ) )
| |
d-way data d-way Iow—rank. rank-one rank-one rank-one
te.nsor;f mOd‘Zl tensor of size component component component
sizen n® and rank r j=1 j=2 j=1
X ~M where M = ZAl ) o Az, ) 00 Ag(:, )

=1

Low-rank: rank(M) <r < n?

Factor matrices:

A, eR"™ forke{l,...,d}

WLOG, n =ny = - = ny

Standard CP [Hitchcock, 1927; Carrol &
Chang, 1970; Harshman, 1970]

f(@,m) = (z—m)*

Poisson CP (Indentity Link) [Welling &
Webber, 2001; Chi & Kolda, 2009]

fa,m)

Logistic CP, etc. [Hong, Kolda, Duersch,
2018]

fx,m)

=m — xlogm

= log(m + 1) — x log(m)

4/13/2019
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Gradient-based Optimization @ﬁﬁﬁﬂ‘ﬁau_
for Fitting the GCP Model Laboratores -~

Gradients computed via a sequence of MTTKRPs:
A | min F(XX, M) = waz,mz i )
@ e} OF
O G,=—=Y 12 || ||
s.t. rank(M) <r k= A, (k)vk\ MTTKRP
/ tensor unfolded in
Define: Elementwise partial gradient tensor, ’ mode k into matrix
i d gradient for mode fei d—1
same size as data tensor=n P orsizen X n
sizen Xr
of MTTKRPs can be computed efficiently...
Y Yi = % (xz', mz) Bader & Kolda, SISC, 2007 — Dense and sparse
Phan, Tichavsky, Cichocki, 2013 — Sequence
Smith et al., IPDPS 2015 — Sparse
Define: Khatri-Rao product in all modes but Kaya & Ucar, SC 2015 — Sparse
one of sizen~1 x r Li et al., IPDPS 2017 — Sparse
Hayashi et al., 2017 — Dense
2y =Aq0---0O Ak:+1 O Ap—1 @0 Ag Ballard, Knight, Rouse, 2017 — Dense

4/13/2019 Kolda - Foundations of Data Science, Purdue



Stochastic Gradient Descent (SGD) for GCP

30-Second Tutorial on SGD

4/13/2019

Sandia o »~
Laboratories =\

Standard Qi G =Y (72 Cost: O(rnd) flops
Ay

n Yi = %(mz,mz)
K .

Stochastic gradient | ék = ?(k)zk Cost: O(rs) flops

*,"* Choose stochastic sparse Y-tensor
.
e _o : =
oY ol® E[Y] =Y
o ®
such that

nnz(g) <s<n

By linearity of expectation: ]E[ék] = Gy

e

J
~N

v

Kolda - Foundations of Data Science, Purdue
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Uniform Sampling

Sample s < n¢ random tensor
entries (with replacement)

S; = #F times ¢ sampled

oS T EE Em . —
QU
‘-----'
~.
N
®
(@ %)
N
(VAR
~.
N—
VAN
Va)
®

- . n

Yi = Si - — Yq
LTS S SRS - Choosing s, the number of sampled elements...

* Chooses = 0(rn)
Claim: E[‘B] =Y * Gradient = 0(rs) = 0(r?n) versus 0(rn%)
> . S Downside...
é Proof:  E[3i] = nd * If data tensor is sparse, few entries
= ~ . ond corresponding to nonzeros will be chosen
E[yz] E[Sz] ?

4/13/2019 Kolda - Foundations of Data Science, Purdue



Intuition: Stratified 0/1 Sampling Decreases @ e
Variance Laboratories

r B

Needell, Srebro, and Ward (2013) justify biased sampling toward functionals with higher Lipschitz smoothness

constants to reduce the variance in the stochastic gradient.
\ J

~ A
In our case, the functionals correspond to f; = f(x;, m;), and we contend that in many cases the functionals with

x; = 0 have lower Lipschitz smoothness constants and therefore needn’t be sampled as often as the nonzeros.
\ Y,

é)nsider Bernoulli with odds link: f(aj, m) — log(l =1 m) — x log m\ -

—x=0.0

4 —x=1.0|/
of 1
S = — L <1 ~3|
8 —1 1+
o (1,m) = = L unbounded as m | 0

m? +m / 0 ' '
0 2 4 6

Model Value (m)




San_diaI |
Stratified 0/1 Sampling ) =

For each partition £, sample s, < |{},| random tensor entries
from 1, (with replacement)

Q4

nonzeros

S; = #F times ¢ sampled

Explicit List

oS TN N E—
\--—--—-’

Y/
§i=§i-M-yi where 1 €
S S .
Claim: E[Y] =Y
- ‘. Se :
é Proof: [E[§;] = o where ¢ €
= . ey
Elg:] = E[3] - % Yi = Yi

Implicit List (Requires Rejection Sampling)

4/13/2019 Kolda - Foundations of Data Science, Purdue 32
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Semi-Stratified 0/1 Sampling ) =

Sample s random nonzero tensor entries (with replacement)
and g random entries (with replacement) and assume zero

S; = # times ¢ sampled as nonzero

’—-----

¢; = # times ¢ sampled as “zero” Nonzeros
__ nnz(X) _n
Yi = Sq - ’ (yz — Ci) Qi —C; where
S q
N e e e e e e e e e o e e e e e o e i — i — i — #
Claim: E[Y] =Y
> , . . n g n?
E Proof: if r; = 0, E[yz] = ]E[qz] . ?Ci = W . ?yz = Y; /: o
— d _
: _ _ . nnz(X 5
it 2 # 0, Bl = B - 298 ) + Bl Lo = =) + e =

4/13/2019 Kolda - Foundations of Data Science, Purdue
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GCP with Stochastic Optimization ) :

= Adam (Kingma & Ba, 2015) with
default parameters and a few
tweaks

= Use stochastic gradient with a small
number of new samples at each
iteration

= Group iterations into epochs of 1000
iterations

= Estimate function values using a large
and fixed set of sampled indices after
each epoch
= |f function value ceases to improve,

reduce learning rate (@ = 0.001) by a
factor of 10

= Once function value ceases to improve
again, quit

training cost

o
>

0.7

0.6

o
U

0.3

MNIST Logistic Regression
' : : : — AdaGrad

— SGDNesterov
— Adam

| | | |
5 10 15 20 25 30 35 40 45
iterations over entire dataset

Image from Kingma & Ba, arXiv:1412.6980v9

4/13/2019 Kolda - Foundations of Data Science, Purdue



For

Sparse Tensors, Suggest @ Nofiora

Laboratories V=

## Samples = # Nonzeros / # Epoch Iters

1.8
1.75

—
- o o
o a N

1.55

N
a

1.45

Estimated loss (10000 samples)
-

1.35

1.3

4/13/2019 Kolda - Foundations of Data Science, Purdue

«10° Tensor size 500 x 400 x 300 and rank r=5 with 356990 nonzeros
SR | | | | | | | | ]
- ) ) -samples=36 |-
- \ Factors 1-4 are each 10% dense, yielding half of the nonzeros g-samgles=179 E
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Uniform Sampling is Worse than Stratified
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Chicago Crime Data

4-way count tensor

= 6,186 Days GCP-Binary
= 24 Hours of the Day Rank = 10
= 77 Community Areas s = 30,000

= 32 Crime Types
Non-zeros: 5,330,673

= Storage: 0.21GB for sparse tensor
Distribution of entries

= 0:98.54%

= 1:1.33%

= >2:0.12%
Using binary version (every nonzero changed to 1)

Obtained from FROSTT
(http://frostt.io/tensors/chicago-crime/)

Data originally from Chicago Data Portal
(https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2)

f(@,m) = log(m +1) — xlog(m)

~800 seconds
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Application to Sparse Crime Binary Tensor
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Related Work

= SGD for Matrix Decomposition

= Gemulla, Nijkamp, Hass, Sismanis, KDD’11 — Distributed SGD (DSGD) method:
Partition matrix into blocks, run parallel SGD on independent blocks, cycling
through the blocks in a way that ensures correctness. Only uses nonzero entries.

= Zhuang, Chin, Juan, and Lin, RecSys’13 — Fast Parallel SGD (FPSGD) method: Matrix
factorization in shared memory environment. No theoretical analysis. Only uses
nonzero entries.

= SGD for Tensor Decomposition
= Mardani, Mateos, Giannakis, IEEE TSP 2015 — OnlineCP uses SGD for tensors that
are streaming, one slice at a time
= Maehara, Hayashi, Kawarabayashi, AAAI-16 — Tensor can be written as sum or
average of a number of tensors. Proposes SGD plus several variations
= @Ge, Huang, Jin, and Yuan, CoLT 2015 consider SGD for symmetric tensor
decomposition

= Tensor Sketching
= Acar, Dunlavy, Kolda, Morup (CILS 2011) — For dense tensors, it is heuristically
possible to recover a full tensor decomposition with only a sketch of the data

= Jain and Oh (NIPS 2014) and Bhojanapalli and Sanghavi (arXiv 2015) more
formally prove under what conditions sketching works, albeit with a focus on
orthogonal symmetric tensor decomposition
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) Conclusions, Future Work,
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References

GCP enables alternative loss functions, but...
= Not amenable to scaling because gradient “dense”

= Developed GCP stochastic gradient
= With variations of stratified sampling for sparse tensors

Future work
= Release for MATLAB Tensor Toolbox
= Parallel implementation (with Eric Phipps — GenTen)
= Distributed implementation (with Karen Devine)

References
= D.Hong, T. G. Kolda, J. A. Duersch. Generalized Canonical
Polyadic Tensor Decomposition. arXiv:1808.07452, 2018 (to
appear in SIAM Review)
= T.G. Kolda, D. Hong, J. A. Duersch. Stochastic Optimization for
Large-Scale Tensor Decomposition, in preparation
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