This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 4650C

A Vision for Managing Extreme-Scale Data Hoards

Jeremy Logan', Kshitij Mehta*, Gerd Heber?,
Scott Klasky*T, Tahsin Kurc*®, Norbert Podhorszki*, Patrick WidenerY, Matthew Wolf*
*Oak Ridge National Laboratory, Oak Ridge TN, USA
tThe University of Tennessee, Knoxville TN, USA
{The HDF Group, Champaign IL, USA
§Stony Brook University, Stony Brook NY, USA
9'Sandia National Laboratories, Albuquerque NM, USA

ABSTRACT

Scientific data collections grow ever larger, both in terms
of the size of individual data items and of the number and
complexity of items. To use and manage them, it is important
to directly address issues of robust and actionable provenance.
We identify three key drivers as our focus: managing the size
and complexity of metadata, lack of a priori information to
match usage intents between publishers and consumers of data,
and support for campaigns over collections of data driven
by multi-disciplinary, collaborating teams. We introduce the
Hoarde abstraction as an attempt to formalize a way of looking
at collections of data to make them more tractable for later use.
Hoarde leverages middleware and systems infrastructures for
scientific and technical data management. Through the lens of
a select group of challenging data usage scenarios, we discuss
some of the aspects of implementation, usage, and forward

portability of this new view on data management.
Index Terms—data provenance, reproducibility, metadata
management, scientific data management

I. INTRODUCTION

As scientific data sources, whether experimental, observa-
tional, or simulation, have continued to scale, managing the
data life cycle of the primary and derived datasets and data
elements (represented as files or data objects) has also grown
to be a large problem. All practitioners develop some standards
for how to organize their data in order to be able to answer
questions like, "Which folder, among the hundreds that are
part of this project, has the data that yielded the result in our
most recent paper?” Tools used to address these questions tend
to be coarse-grained (i.e., using Is and grep to find all the files
from September of last year), as well as prone to error ("My
input parameter file for the October data was the good one
from the August runs... or was it the July runs?”).

Here we present an abstraction for collection management
that we call Hoarde; it is a vehicle for taking the large data
pool (your hoard) and turning it into a loosely regimented set
of agents that can get you answers (your horde). Hoarde is an
attempt to formalize a way of looking at collections of data to
make them more tractable for later use. In other words, it seeks
to take a vast collection of piled data (a hoard) and convert
it into something that can lead to actionable advancements
(a horde). Hence the name — hoard+horde = Hoarde. More

concretely, a Hoarde is a model for representing campaign
metadata that is light-impact, descriptive, highly flexible, uses
existing tools, supports large volumes of data, and is built upon
incorporation of self-describing data.

In particular, however, Hoarde is addressing a particular
rising set of scientific data hoards that are composed of col-
lections of self-describing data. Self-describing data formats
like HDF5, ADIOS, XML, NetCDF, and so on are an integral
part of many existing simulation I/O infrastructures, and their
impact has grown over the years. The advantage of self-
describing data formats is that they provide a vehicle for
later users (potentially the same scientists) to come back and
not only access the raw binary values of the data elements
(variables) but also query and interpret based on the local
context of those variables. For example, I may call pressure
”Pr” in my current code, but I recognize the variable named
“Pressure” as being the same thing.

We build upon a foundation of projects that have explored
aspects of this problem over the years. Ranging from explo-
rations of novel approaches for light-weight self-describing
data formats [1], [2], [3] to extending data sources with
embedded visualization [4] or performance metadata [S], we
have demonstrated a consistent value in maintaining some of
the context provenance of individual data sets as they are
generated. We also have shown the utility of later repurposing
such enhanced data for tasks like automatically generating I/O
performance benchmark codes [6], interfacing to pre-packaged
visualization routines [7], or using it as a building block
for future designs of I/O systems [8]. As valuable as self-
describing techniques have been for maintaining a connection
for individual data items and files, there still remains a problem
of how to deal with large collections (data lakes, data hoards,
piles of files, etc.). Experiences with provenance systems [9],
[10] has shown that there is some redundancy between what
must be manually input by a user for the provenance and what
is available in the self-describing format.

Leveraging this track record of using techniques for real
application scenarios as well as a wealth of related work (§V),
there are three key drivers we have identified as our focus:
Managing the size and complexity of metadata; Lack of a
priori information about what indices or provenance markups
will be needed; and Support for campaigns over collections
of data driven by multi-disciplinary, collaborating teams. The

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

context for these is more fully developed in the analysis of
some of the use cases detailed in § II-D.

As our approach, we have targeted finding a minimal
intrusion, without complex runtime and setup dependencies,
that can help support the relevant uses. We are exploring how
to do something with a lighter impact than traditional prove-
nance systems based on the combination of self-describing
data and the context clues that come from data being in a
collection. Much like reflection or introspection can be used in
a programming model to enable interesting new capabilities,
these self-describing collections can be used to enable new
data-centric services.

A richer description of the Hoarde abstraction is in § III; a
key insight is that we want minimal user impact that enables
key operations that align with use case scenarios similar
to those described in § II. To this end, we have focused
on operations of key membership, forward provenance, and
backward provenance, rather than generic, full provenance
views. These operations include, “is this image from my
paper in this archive” (compare: cmp), "What collection items
were part of generating this item?” (list: Is), "What were
the differences between the constituents for generating these
two items” (difference: diff). The comparisons to traditional
file system operators are not exact; for example, the return
value of an ”Is”-like operator on a collection member is
an annotated provenance graph, rather than a simple name
and modification timestamp. However, it is not a complete
surprise that there are many similar analogies for the basic
functionality from the filesystem community, as that is how
many end users have chosen to create their own ad hoc
collection management systems. In our work, we have built
an infrastructure to understand some of the details of how the
content and presentation would be most useful for these sorts
of queries over collections and to explore the performance
and metadata structure implications of this set of restrictions,
which we discuss in depth in § IV.

We present a few results from the infrastructure, giving
early definition to where we think further work is needed.
For example, longitudinal studies of large data collections are
an important scenario in data-rich environments that our tools
should support. Collection-tracking and automation around
self-describing data is also useful beyond the scenarios de-
scribed in this work. Such tools could be layered on top
of many measurement-driven datasets (e.g., those generated
from Internet of Things, scientific sensors, and performance
quantification studies).

II. MOTIVATING EXAMPLES

For this work, we focus on a different subset of large
data hoards than the cloud-scale data lakes, data warehouses,
etc. We build from experience with large-scale scientific and
technical data sets, but we also are informed by how large,
extremely heterogeneous data collections (like those from
academic libraries or federal process review) have similar
constraints. With the scenarios below, we wanted to capture
a host of such usages. This scenario in II-C specifically is

a useful challenge to our basic assumptions, since much of
the data may have been originally written without a self-
describing format, but light-weight ways for bridging this
divide will hopefully emerge from its exploration. With this
basis of scope, we then discuss the commonalities that the
Hoarde abstraction seeks to address.

A. Performance Optimization at the Exascale

Cooperative design (Co-design) centers that foster a col-
laborative approach between software ecosystems, hardware
technologies, and computational science applications form an
essential part of the Exascale Computing Project (ECP) [11],
[12]. One such co-design center is CODAR (Co-Design Center
for Online Data Analysis and Reduction at the Exascale) [13]
that aims to study performance tradeoffs for offline versus
online analyses of data for different classes of applications.

Such co-design studies involve coupling multiple applica-
tions using an I/O middleware such as ADIOS [1]. Exper-
iments are performed to study the impact of various com-
pression and reduction algorithms under different workflow
configurations. Fig 1 shows a real-world example of the high-
fidelity whole device modeling of magnetically confined fusion
plasmas [14], [15]. Here, XGC and GENE are simulations that
are tightly coupled through the ADIOS middleware. Different
output variables undergo different transformations before some
set of results is written to long-term storage.

Co-design studies typically consist of a large number of
experiments, run by multiple users, on multiple supercomput-
ers, and across different applications in various domains. A
wealth of performance information is needed to understand the
tradeoffs and impact of different choices. Simulation inputs,
outputs, and reduction/analysis results as well as performance
data are captured and stored in self-describing formats.

CODAR developed a tool, called Cheetah, to generate the
campaigns of experiments needed to conduct such parametric
studies. A Cheetah campaign directory consists of separate
sub-directories for each experiment, along with extensive
metadata about the workflow, its orchestration, and simulation
and performance output data. That is, each co-design experi-
ment produces multiple intermediate and final data products.
An interesting aspect of co-design data is that some data
itself forms metadata; metadata does not necessarily exist as
a separate entity. For example, consider a query where the
user wants to know the fidelity of a compression method
as compared to a base case. Here, the base case forms the
metadata; however, it exists as a set of experiments in the
campaign and is not tagged, marked, or stored any differently
from other data. Traditional metadata and provenance systems
fall short here as most of them require metadata to be marked
and stored in a different way from other data.

As a detailed analysis of a campaign is performed, the
following features are highly desired.

o Being able to establish the detailed lineage for various
data products in co-design experiments is important for
multiple reasons. First, it greatly aids in making data
and processes reproducible. Second, it makes debugging

WDM Coupling Workflow

_________________________ Savanna
I Workflow Orchestrator

__ |

VTK-M) VTK-M L
reduction i reduction VTK-M image
‘ plots plots plots

| I
1 -
v [GENE L ADIOS i xGc !
P interpolator b= = il PETSC | ADIOS
| t———F-——= 1]s s ;,,,,T,,,,J .
' ol 5(sOSFlow)3 ADIOS :
| t Performance '« Ebdute
| Monitoring ADIOS
ADIOS
1 MGARD I sz VTK»MI fteature
! Zchecker ADipS Zchecker piots
y [
! AD0S VTK-M performance ADIOS VTK-M physics
1 | plots plots
1
1
I
1
1
1

Fig. 1. The Whole Device Modeling coupling workflow is a typical co-design
experiment in which two fusion simulations - XGC and GENE, are tightly
coupled together using ADIOS. Multiple diagnostics and analysis executables
are coupled with the running simulations. Co-design experiments that optimize
this workflow and study various tradeoffs involve running a large number of
experiments, thereby generating a large volume of campaign data.

issues in complex workflows easier. Third, it allows mak-
ing a comparative study of workflows. Questions such as
“what was different between these experiments that led
to this different result?” can be answered effectively.

o Querying large amounts of campaign data for information
is very challenging, as the structure of the data is not
known a priori. This prohibits the use of database systems
that rely of building relational schemas based on well
structured data. Complex queries such as “what operation
in the complex workflow led to this intermediate data
item?”, “what compression scheme leads to at least 50%
reduction in data size?” are highly desired. The best way
to index campaign data automatically is a challenging
question.

o Maintaining historical campaign data facilitates develop-
ment of different machine learning algorithms focused on
optimizing workflows, and also for effective dissemina-
tion of information to the science community.

B. Analysis of Whole Slide Tissue Images

High resolution images of diseased and normal tissue spec-
imens enable quantitative studies of disease state at the sub-
cellular scales [16], [17], [18], [19], [20]. As technology for
scanning whole slide tissue specimens rapidly improves, the
variety and sizes of tissue image datasets and the complexity
of image analyses increase. In most cases, an imaging project
will employ multiple analysis pipelines and improve analysis
results in an iterative process. Consider a study investigating
correlations between tumor morphology and cancer sub-types
or clinical outcome data (see Figure 2). One group of analysis
pipelines in this study processes whole slide tissue images
(WSIs) to classify regions and extract patterns of lymphocytes.
Another set of pipelines segment nuclei in the images and
compute size, shape and texture features for each segmented
nucleus. A third group of analysis pipelines computes spatial

Whole slide
tissue images

i Region
Classification

Pipeline

Computation of
Spatial Statistics

Clustering/Correlation
Computations
\ J

(Computation of
Aggregated
|_ Imaging Features |

Nucleus
Segmentation
Pipeline

Fig. 2. An example of analysis methods and workflows to carry correlative
analysis using whole slide tissue images. Tissue images are processed through
groups of analysis pipelines to extract object-level and region-level imaging

Sfeatures. These features are then processed through another set of pipelines to

compute statistics and summaries. Finally, the summary data are analyzed to
generate patient-level clustering and correlation data to look for relationships
between imagging features and genomics or clinical data. A study like this
will execute multiple variations of individual analysis pipelines, generate a
a large number of derived datasets, and create a complex graph of analysis
operations and datasets. Metadata and provenance information has to be
captured, managed and indexed for the research team to debug the whole
process and produce high quality results for publication.

statistics and aggregate features at the image- and patient-level
from lymphocyte patterns and nuclear segmentation results.
The last set of analysis pipelines carries out clustering and
association operations on spatial statistics and aggregated
features to look for correlations between imaging features and
cancer sub-types. Each of these pipelines may be composed
of multiple methods. A nucleus segmentation algorithm, for
example, may consist of a series of operations, including
color normalization, color de-convolution, nucleus detection,
distance transformation, clustering, and mean shift analysis.

In this study, the research team will carry out analyses
multiple times in order to improve the analysis results. In this
process, the team may change the algorithm parameters or
the algorithm stages (e.g., they may use a different clustering
method), or even use new analysis pipelines. Different analysis
runs may be carried out by different members of the research
team. In addition to this metadata, the team has to capture
and manage metadata about a large volume of primary and
derived data. In medical imaging domain, DICOM and its
various extensions [21], [22], [23], [24] as well as vendor
specific formats provide domain specific self-describing data
to capture metadata about images and analysis results. These
formats, however, do not necessarily store provenance infor-
mation. Moreover, WSIs are high resolution images and can
contain tens of billions of pixels. WSIs are often partitioned
into patches for analysis with region classification algorithms.
Nuclear segmentation analyses may segment millions of nuclei
in an image. A single analysis run on a dataset with thousands
of images can generate hundreds of thousands of patches,
segmentation masks and hundreds of millions of segmented
nuclei. As a result, the iterative refinement process can easily
create a large number of analysis runs, a large volume of
derived datasets (analysis results), and a complex, evolving
graph of data analysis operations and datasets.

C. Supporting legacy collections of ad-hoc heterogenous data

Some classes of applications involve long-running efforts
that accumulate vast stores of different but equally important

data over time as artifacts of design, testing, and production.
Design documents include reports, schematics, spreadsheets,
emails, and other notes; these are produced by and manip-
ulated with both widely available commercial productivity
software (such as Microsoft Office) and by special-purpose
software with proprietary storage formats. Testing data adds to
this large amounts of numerical results, test descriptions, and
parameter sets. Production data adds another type of data store
to the problem, as database management software is frequently
used to maintain inventory information. When problems are
detected during testing or production use, answering the ques-
tions that lead to root causes requires a holistic look back at a
large and interrelated data space: What testing regime was used
for the widget in question? Was its design valid? How many
of these widgets are in production? Data that accumulates over
years becomes challenging to manage and query. Techniques
for organizing different heterogeneous data in the right ways
can shorten the iteration time required for such investigations.

These kinds of issues arise in the context of high-
consequence continual experimental activities, such as those
carried out as part of the National Nuclear Security Admin-
istration (NNSA) (a part of the US Department of Energy)
Stockpile Stewardship [25] program. Since the early 1990s,
the US has unilaterally refrained from testing nuclear weapons
through actual explosive tests. Computer simulations are in-
stead used to predict the reliability, safety, and performance
of weapons and weapon components. Models of the various
physical phenomena involved are regularly validated against
historical data collected during previous underground testing,
and are constantly reviewed, updated, and improved as new
data becomes available from laboratory examinations, material
properties experiments, and other evolving simulation results.
As the results of the Stockpile Stewardship program are
regularly reported to the US Congress, the organization of this
data environment must satisfy rigorous audit and verification
requirements.

Another example of such large, increasingly voluminous,
heterogeneous data comes from academic libraries that are in-
creasingly being tasked with campaign-scale data management
for experimental research across multiple research disciplines.
In this capacity, they are seeking to provide not only basic
hardware and software solutions for data storage, but also
advanced features and capabilities requested or required by
faculty, researchers, and other stakeholders!. Notable among
these capabilities is the ability to flexibly reconstruct previous
experimental results on demand. The cross-disciplinary service
orientation of academic libraries frequently means that they
cannot dictate data storage formats, archival strategies, and
”build-vs-buy”-style policies about storing data versus regen-
erating it. More often, the opposite is true: librarians have to
accommodate researchers whose experimental data collection
practices and ideas on appropriate data management can differ
significantly. Issues which must be addressed here include:

IAt American universities, these can include Federal, state and local
government agencies, private funding organizations, and community interest
organizations.

which data should be stored, at what availability and cost?
When does it make more sense to store/tag a data generator
rather than the data itself? How can new workflows incorporate
data previously stored in a library’s data management system
in order to generate new derived data, and how should those
associations themselves be recorded?

D. Discussion

An overarching commonality amongst all the use cases de-
scribed above is that they have strong requirements for manag-
ing provenance and metadata; however, no single provenance
system meets the requirements of all the use cases. There is no
"one-size-fits-all’ solution, but it would be highly beneficial if
there were a high-level abstraction that could provide a generic
solution, or which could be used as a baseline to design an
ad-hoc solution. We identify three important features that are
common across the use cases that influence the design of an
abstraction such as Hoarde.

First, all use cases described involve managing large hoards
of complex, heterogeneous data sets and annotations. For co-
design experiments, this involves a combination of simulation
data, analysis data, application and workflow provenance,
workflow orchestration information, and performance informa-
tion, stored across self-describing binary files, json documents,
text files etc. For the image analysis use case, analyses per-
formed over large amounts of tissue images generates a large
volume of intermediate data products with important metadata
that describes the workflow. The collections of data that need
to be handled by the NNSA include documents that describe
metadata about a variety of processes, accumulated over a
period of many years. In all of these use cases, experiments,
analyses and data capture processes can rapidly evolve. In
the image analysis use case, for example, the structure of the
analysis workflows and types of derived datasets can quickly
change as the team seeks to iteratively do quality assessment
and improve analysis results. This dynamic, rapid evolving
nature of data collection and analysis necessitates flexible
absractions and frameworks that have minimal impact on a
research team’s workflow and that can capture metadata in a
self-describing format which can later be parsed, indexed, and
managed.

Secondly, the distinction between data and metadata can be
blurry, which is a hindrance for using traditional provenance
systems. As described for co-design experiments, data or
experiments that form baseline runs are considered to be
metadata for later analysis and comparison across experiments.
This classifies some data items as more reusable and add more
weight to them in the hoard, and also has a strong effect
on the quality of service requirements of an application. For
example, what if a query does not return a data product that
should have been returned if the data product were classified
differently? As machine learning algorithms are expected to
play a strong role in the characterization of complex data in a
large hoard, this is an important consideration. So, how should
Hoarde automatically associate data with metadata to capture
both data and processes?

Thirdly, collection-tracking and (automated) metadata cap-
ture and management around self-describing formats provides
an effective means of packaging and disseminating not only
data but also relevant metadata context. In addition to being
vital for reproducibility and dissemination to the scientific
community, this is critical in multi-disciplinary and multi-
institutional research where team work is not necessarily
closely coupled and synchronized (e.g., the image analysis use
case).

Finally, from a functional perspective, building and main-
taining the tooling for any automated extraction is very chal-
lenging. Although one could implement the necessary features
with a sufficiently complicated database infrastructure and
clever schema, we want to look at what can be achieved with
the most minimal extension/addition that still supports these
requirements. We take these insights in order to propose our
new abstraction for a collection of metadata-rich items, as you
will see in the following section.

ITII. THE HOARDE ABSTRACTION

We envision Hoarde to be both an organizational convention
around a dataset and its metadata, as well as the software
mechanisms which support and leverage those conventions.
These pieces will work together to address the common
features summarized in § II-D. To characterize the Hoarde
abstraction, we approach it from several perspectives in the
remainder of this section.

A. Purpose / Objective

The main purpose of Hoarde is to support the manage-
ment of campaign life cycles in HPC environments. Hoarde’s
descriptive approach attempts to create a useful metadata
abstraction for managing data related to an HPC campaign,
which consists of all data related to a set of workflow
executions performed over a number of weeks or months.
Based on our experiences with the science cases described
in Section II and other science applications, we believe we
have identified a critical set of behaviors and functionality that
a metadata management system would need to support. This
functionality includes provenance for reproducibility, dataflow
debugging and execution support, as well as support for
rich queries involving combinations of data and metadata.
Whatever the subject, the underlying campaigns are driven by
inquiry, which typically includes false starts, dead ends, and
often unpredictable dynamics. Hoarde is an attempt to have a
stabilizing effect on campaign data life cycles much like the
scientific method and judicious applications of logic have on
the process of scientific discovery.

B. Data

Self-describing data formats such as ADIOS, HDFS5, and
NetCDF already play a significant role in managing scientific
data collections, particularly those that form coherent cam-
paigns or chains of experiments. The goal of Hoarde is to be
a minimal extension that will enhance those community prac-
tices. Although there is some similarity to existing provenance

systems that depend on external databases and infrastructures
to maintain the connections and context, we focus instead
on the use of self-describing data formats which can support
embedding metadata alongside the data.

It is important to note that for the vision we lay out below
that the contents we envision in a Hoarde are more than just the
immediate binary data files associated with the experimental
data. It is important to include a complete repository within
the campaign archive: source code for executables, python
analysis scripts, output from std.out of the run, input files,
and so on, as well as image files, analysis results, and other
scientific output files. It is this richer context of the data setting
within the data hoard that enables the inference of a set of
provenance and connectedness properties.

With that in mind, the main relationship between datasets
in a Hoarde is a simple derivation relation. A source dataset
refers to a dataset that was not produced by a campaign
but rather introduced as an input to the campaign. This is
in contrast to a derived dataset, which is produced as a
result of an operation on one or more inputs. We also define
metadata broadly as any information added to a dataset to
provide additional context, leaving the user free to establish
connections to any of the relevant contexts.

A Hoarde consists of datasets and supports certain oper-
ations on the metadata of those datasets. By ‘metadata’ we
mean any information which documents the derivation rela-
tionship between datasets: As shown in Fig. 3, some datasets
are the result of executing certain commands, of applying
processing steps to other datasets. (See similar concepts in [26]
or [27].) A command can be a complex workflow or a single
processing step.

Dataset OCiommand “‘Dataset

Fig. 3. A dataset is produced from an operation on zero or more existing
datasets.

This relationship leads to a simple categorization of datasets,
which are illustrated in Fig. 4. A dataset which is not derived
from other datasets (in the same Hoarde) is called a source
dataset. All non-source datasets in a Hoarde are referred to
as derived datasets. It is sometimes convenient to further
divide derived datasets into intermediate and product datasets.
Product datasets are derived datasets that have additional
metadata, such as a goal, an intended audience, a release date,
etc.

For example, performance studies described in section
II-A involve generating a large number of experiments in a
campaign. Each experiment consists of a set of simulations
running concurrently and coupled together to produce a set
of raw, binary output data. These simulations are controlled
by input datasets and parameters described in parameter files.
Application parameters, workflow orchestration options are
maintained in separate files. Multiple analysis applications
may be run over the simulation output (FFT calculation,

Dataset

¥ A

Source

Derived

« a

Product

Intermediate

Fig. 4. Types of datasets

probability distribution function generation etc.) to further
generate data products. These are followed by plotting scripts
written in languages such as Python and R to generate a set
of images. In a Hoarde, the input data files form the source
datasets, whereas the simulation outputs form the intermediate
datasets. They further lead to another set of intermediate
datasets (output of the FFT calculations), which then lead to
the final data products - the images. The parameter files that
can be read and ingested by Hoarde form the core metadata,
and a combination of parameters with applications that are run
on intermediate datasets form the enactments or commands.

Users should be able to store arbitrary metadata as needed
for an application, but there is a minimal collection of informa-
tion we would like to capture for every dataset. Generally this
consists of the information needed to allow the user to recreate
the steps that produced the dataset in question. For a particular
dataset, this might include details of the program that produced
it (including, for instance, a link to a particular commit in
a source repository), command line arguments, input files,
etc. In general, results are not always produced from a single
workflow specification processed by a workflow engine. For
non-trivial workflows, we would expect a final product to have
a tree of metadata leading back through multiple program
executions to leaf nodes consisting of external source datasets.
Some or all of the data may be produced by manual steps, or
by multiple workflow descriptors, so some care is required to
insure that enough information is captured to describe all of
the necessary steps to reproduce a particular data set.

A longer term goal is to have an automated mechanism
that could, from the stored metadata, reproduce the workflow
in question without user intervention. However, this is a much
more challenging goal, as it would require a full accounting of
the system software on the machine, and a sufficiently adroit
mechanism to build an arbitrary software stack on demand.

There are a number of options for organizing metadata,
and a given choice will have significant impact on system
performance. Fig. 5 illustrates three possible choices. In Fig.
5a, all campaign metadata is stored and maintained in a single
location. Keeping metadata together simplifies maintenance
of indices as new metadata is added to a Hoarde. However,
scalability may become an issue as the campaign grows larger.
Another strategy, shown in Fig. 5b, is to keep shadow meta-

data. In this scheme, separate metadata files are kept for each
dataset and each operation. At the other end of the spectrum,
Fig. 5c shows the use of self describing data files to store
metadata alongside data. A full fledged implementation would
potentially use a combination of all three of these strategies
to juggle different concerns, switching between strategies to
facilitate creation of query indices and support tightly-coupled
metadata, while allowing arbitrary file formats.

The advantages and disadvantages of these organizational
options become clearer as we begin to examine some com-
mon operations we expect Hoarde to perform. The insertion
operation, for instance, is impacted by the choice of metadata
organization. This is likely an insignificant cost for insertion
of a single data object, but it becomes more of a concern when
we consider ’bulk import” of existing project data, which may
consist of large numbers of individual data files.

Another axis in the design space relates to how Hoarde
controls access to data. Regardless of metadata organization,
the system will rely on links between metadata and corre-
sponding data. Unregulated, users would be able to move or
delete files from their known locations, resulting in broken
metadata links. How should a system like Hoarde handle this
issue? One option would be to do nothing, allowing the user
to move files and break links between metadata and associated
data. At a minimum, a system like this ought to allow the user
to update and repair these links. However, this is probably
not an acceptable strategy as we begin to rely more on these
systems for accountability and reproducibility, as there would
be little to insure that metadata remains correct after such
manipulations. At the other extreme, our system could strongly
limit access to all data and metadata, requiring a user to access
all data and metadata through a system API that hides data
and metadata locations, and limits changes that can be made
by users. Exploring this design space and understanding the
many trade-offs is a part of the goal of our initial experiments
described in the next section.

C. Behavior / Functionality

Hoarde behavior can be broken into three groups of func-
tions to facilitate:

1) Data provenance capture for reproducibility

2) Data- and workflow debugging, and (re-)execution

3) Combined queries of data and metadata.

Provenance for reproducibility: Full reproducibility of
workflows is a challenging goal, and one that is beyond the
scope of this work. However, we believe that a key ingredient
of this reproducibility is the availability of appropriate prove-
nance metadata. For a particular data product, this metadata
should include a tree of operations and intermediate data
products that are part of the campaign and leading back to
any source (external) datasets that the product relies upon.
Metadata for each operation should include source code or
version information, along with input parameters, dependency
versions, system information, etc., that would allow the op-
eration to be performed again in a new workflow designed
to reproduce the original computations. This collection of

TCGA Image

TCGA Image

TCGA Image

Normalization

|

Normalization

|
|

Normalization

Normalized
Image

Normalized
Image

Normalized []
Image (O

O

Segmentation

|

Segmentation

|
|

O

Segmentation

Segmented
Image

Segmented
Image

Segmented []
Image O

(a) Single metadata: All campaign
metadata is encoded in a single meta-
data repository.

(b) Shadow metadata: Metadata for
each pipeline element is kept in a
separate file, with links that define
the connections.

(c) Embedded Meta-
data: Self-describing
data files store both
data and metadata.

Fig. 5. Metadata Organization: Each figure illustrates a possible arrangement of metadata for a simple image processing pipeline. Green indicates external
source data, operations on the data are shown in red, derived data files are in yellow, and blue indicates corresponding metadata.

provenance information can also be leveraged to provide
correct attribution of the source datasets that contribute to a
published data product.

Executing and debugging dataflows: Working with a cam-
paign involving a large set of runs that are performed over a
long period of time tends to become more difficult as time
passes, as memory of which workflows were performed, and
what options were used, and how codes were changed fades
from memory. To assist with these types of campaigns, a meta-
data management tool should answer questions about what
steps were involved in generating a particular data product,
and how the provenance of similar data products differ. It is
critical that such a tool provide clear and concise answers
to these questions, rather than exhaustive textual output that
requires intense scrutiny by a scientist managing the campaign.

Metadata Versioning. Consider a use case of trying to track
the relationship of a particular jpeg graph in a publication to
the data sets and intermediate results that generated it. In terms
of the data set derivation relationship maintained in a Hoarde,
a publication is a product. This begs the question where the
product’s provenance and the provenance of all the other
sources and intermediate datasets are tracked and maintained.
To make matters worse, it would be unrealistic to assume that
there is only one chain of versions, one provenance trail.

Campaigns are driven by inquiry, and false starts and dead
ends are encountered regularly on many a campaign trail.
Furthermore, most campaigns are team (multi-user) efforts,
and different team members will explore different avenues
simultaneously, learn from each other, and re-use each others
results. While there appears to be a strong versioning com-
ponent to this picture, it is the fundamental non-linearity of
progress that must be handled in some way. Further, with
the periodic export of parts of the Hoarde collection for use
by remote collaborators and the occasional reintegration of
their results, this non-linearity becomes even more evident.
On the one hand, it is crucial that items in a Hoarde and
their derivation are immutable (no backsliding, history can’t be
destroyed). On the other hand, it must be possible to “weave”

results from different lines of inquiry into new products and
further inquiry. This capability requires support for functional
data structures [28]: “A functional data structure is essentially
an immutable data structure: its values never change. ...,
functional data structures do support operations like insertion
or deletion, they are just not in-place. Instead these operations
are handled by creating an entirely new updated structure.”

Rich queries of data and metadata: Since science appli-
cations are primarily concerned with advancing science, we
would also like to be able to provide a range of query
capabilities that support access to both data and metadata, as
well as combinations of the two.

Given the varied needs of our science use cases, it is also
important to consider how the Hoarde implementation will
need to support several types of queries. A Hoarde instance,
for example, should be able to answer queries like, "Which
folder, among the hundreds that are part of this project, has
the data that yielded the result in our most recent paper?”’
Simply using file system tools to answer queries like this
tend to be coarse-grained (i.e., using Is and grep to find all
the files from September of last year) and prone to error
("My input parameter file for the October data was the good
one from the August runs... or was it the July runs?”).
Much like the use of grep and Is in command line scripts
enable functionality, albeit at a cost, the Hoarde abstraction
is intended to define (and provide tools to define) useful sets
of primitives that can be composed together to support simple
and complex queries. We envision future systems providing
pluggable query mechanisms that will enable science domain
users to design efficient domain-specific queries that, once
added to the system, can be accessed through the front-end
Hoarde mechanism. In the meantime though, we are focusing
on a family of general queries that relate to common metadata
that will be available regardless of application domain. Table I
provides a listing of the core Hoarde queries on data and
metadata. Supporting these types of queries will require the
ability to build custom indices on-demand. In a distributed
setting, the cost of building such indices for distributed, self-

Command Description
includes <dataset> Returns (Boolean) if a dataset is part
of a Hoarde

describe <dataset>
ancestors <dataset>
descendants <dataset>
sources

sources <dataset>
products

products <dataset>

Returns a description of a dataset
Returns the ancestors of a dataset
Returns the descendants of a dataset
Returns all sources of a Hoarde
Returns the sources of a given dataset
Returns all products of a Hoarde
Returns the products that a given
dataset influences

Returns the command (parameters) that
produced a given (derived) dataset
Lists the lineage of a dataset

Finds all datasets that satisfy a certain
predicate

Compares the lineage of two datasets
Returns a derived dataset that repre-
sents the union of certain datasets

TABLE I
HOARDE QUERY COMMANDS.

cmd <dataset>

list <dataset>
find <predicate>

diff <datasetl > <dataset2>
union <dataset]>
<datasetN>

describing metadata as compared to centralized metadata is a
key consideration.

D. Interfaces and Measuring Performance

There are additional perspectives on Hoarde which should
be mentioned but which are still part of open exploration.

The first one is the question of the form of delivery; in
other words, in what form does Hoarde get used by an end
consumer? Is it a framework? A set of services? A library?
An interface? A collection of tools? At the core is a need to
quantify the usability of the resulting implementation of the
abstraction for the end user. Usability is notoriously difficult
to measure, as it has many aspects that are highly subjective.
However, taking an approach where we can explore over sev-
eral related implementations to provide similar capabilities but
in different formats for end users will likely be an important
component of the future vision. In this view, a goal for the
future of the Hoarde abstraction is a shared lingua franca for
distributed data engineering. End users should be able to use
whatever sort of interface would best fit the local idiom; there
is no global best framework or mechanism.

The second one is the development of policies for measuring
performance of a Hoarde implementation. We describe in § IV
a particular implementation choice, but the core of the work as
we see it is in developing the policies of this data engineering
environment and not in the particular idioms of the mechanism
to enable it. Specifically, a key component of these policy
decisions will have to be a quantification of metrics to assess
the quality of the information extracted from the collection
as a function of the efficiency of delivery. Here the efficiency
is not necessarily about raw performance, but it also includes
quantifying how many times a user needs to iterate on a set
of queries to extract their desired result.

IV. PROTOTYPE AND EVALUATION

In this section, we report on what we have learned from
trying to apply the Hoarde abstraction to the co-design and

image use cases described in Section II. We describe a proof-
of-concept based on Emacs Org mode, batch and python
scripting, and Git, as well as analyse its limitations.

Our target platform was OLCF Titan. Since both use cases
had been well underway for some time, it was also clear that
this was not a “green field” exercise. We had to make do with
the tools (mostly standard UNIX tools and scripting language)
available on Titan and the digital artifacts from campaigns in
progress.

A. Applying Hoarde ideas to Exascale Co-Design

A prototype implementation for this abstraction was made
using fundamental concepts provided in the git revision control
system. We use the git branching and commits model to
provide a sample implementation for the performance studies
for exascale described in section II-A. Recall that these co-
design studies are composed of campaign of experiments, with
a variety of data products in each experiment. To manage this
Hoarde, we associate each atomic data item in the Hoarde
with a Research Object (RO). These are unique ids that
identify objects in the Hoarde. We generate a unique id
for the campaign using UUIDs, and append the experiment
number to generate a unique ID for an experiment as a simple
illustration of creating uniquely IDs for ROs. Experiment ROs
are maintained in a separate directory, which contains a full
set of metadata to describe and compose the experiment.

We utilize git SHA-1 hashes to generate IDs for datasets
involved in the experiment. We use git commits and branches
to form the association between the various datasets in the RO,
where a branch represents the lineage of a RO, and the commit
order identifies the evolution of the workflow. The top-level
commit represents a source dataset, whereas the leaf commits
form the final dataset products. Experiment run parameters
are extracted from input files, and automatically ingested in
the RO for the experiment and stored separately as metadata.
A query that inquires for the lineage of an image file would
then involve calculating the SHA-1 hash of the image file and
looking for it in the Hoarde. A successful match would then
look up the git commits and the associated branch to post the
full lineage of run parameters and input datasets that lead to the
generation of the image. The lineage could be a simulation that
read a parameter file and produced output files, on which an
FFT application was run to generate data, which was analyzed
using a Python script to generate the final image in question.

B. Versioning and Queries

As we observed in the introduction to Section III, research
studies can have false starts, dead ends, and are increasingly
team efforts which may explore multiple avenues concur-
rently. This nature of research studies requires a means of
handling versioning through a functional data structure. One
of our favorite tools, Git [29], implements just such a data
structure [28]. The appeal and practicality of using Git in
some form for provenance tracking was demonstrated in [30].
While Git alone is not sufficient for Hoarde, it is an excellent

tool for exploring the implementation of some of the Hoarde
operations.

1) Using Git for Prototyping: For our prototype, we chose
to implement three operations:

e includes

o diff

e cherry-pick

With a Git command namesake, the third operation is
the most straightforward. In the tissue image analysis, for
example, it is common practice to combine results (datasets)
from different analysis runs into a combined result set that
is not itself the direct result of an image analysis run, but
represents the best judgement of domain experts. Assuming
that the granularity of the commits is such that it facilitates
this kind of “cherry-picking”, there is a direct mapping with
the required Hoarde functionality

The includes operation tests the affiliation of a dataset
/ digital artifact with a Hoarde. Users who are familiar with
Git internals [29] know that Git maintains an internal object
database in which byte copies of all versions of a repository’s
files are stored. The files are named or (content-)addressed
essentially by their SHA-1 hash. An important advantage of
this approach is that an item can be identified even if it
was moved or renamed in a (location-based) file system. The
calculation of SHA-1 hashes can take a substantial amount
of time if it needs to be performed over large collections
as is the case for the tissue image analysis. For our test
collection of ~115,000 artifacts, using a single processor, this
took about an hour to calculate the SHA-1 hashes (including
directory traversals, etc.). Fortunately, this operation can be
easily parallelized and does not present a real bottleneck. The
lookup of SHA-1s can be made more effective, by training a
Bloom filter to quickly rule out the association of an artifact
with a Hoarde. The Bloom filter for our sample collection was
just a few MB. Finally, we maintained a sorted list of SHA-1
hashes to perform a binary search, if the Bloom filter test was
inconclusive.

Implementations of a diff operation are highly dependent
on representations and the complexity of the derivation rela-
tionships. In the co-design application, a campaign instance
was represented as a DataFrame, where columns represent
input parameters or (output) metrics and rows represent in-
dividual experiments. Here, diff can be reduced to the
comparison of (potentially sparse) vectors and DataFrames.
Because of the (non-trivial) graph structure of the image
analysis workflow, to compare two such graph graph instances
is less straightforward. A practical approach to arrive at an
intuitive difference is not to treat this as a general graph
comparison problem, but to reduce it to a largest common
subsequence (LCS) problem as implemented, for example, in
noWorkflow[31].

2) Why Git alone is not enough: Git served us well to
explore some of the ideas related to functional data structures
and versioning. However, it is clear that this is not exactly for
what it was made. The most obvious shortcoming is the by
comparison limited number of objects (a few million?) Git can

handle. With respect to the derivation relationship, it is unclear
where the command(s) would fit. Candidates would be the
commit message or one of the Org documents in the commit,
but there are plenty of other issues. As we mentioned earlier,
the smallest unit of change in Git is the commit. Unfortunately,
there is no evidence to assume that the evolution of many
campaigns has a “natural” commit granularity. Even if it exists,
it might hardly be known when a campaign gets underway, and
it might change.

Another set of concerns is the semantic gap between the
primitives of a given tool or technology and the domain
concepts of a campaign. It’s a non-trivial task for campaign
planners to map domain concepts (e.g., representations of
fields, calibrations, invariants, protocols, data documentation,
etc.) onto the primitives offered by self-describing file formats.
Note that the difficulty is not in the direction from the domain
science to the technical primitives. Reduction is easy! The
problem is in the reverse direction, when domain concepts
need to be recovered from complex patterns of technical
primitives. A Git commit that is part of multiple branches has
a different domain-level context in each branch of which it is a
part (it is “transcluded”). How is that context to be recovered,
and where is the protocol that makes that recovery possible
documented? (When artifacts are reduced to SHA-1 hashes, a
“phantom multi-presence” can happen when, unbeknownst to
the committer(s), two artifacts happen to be bytewise identical.
When implemented this way, some Hoarde operations are in
trouble immediately because the context is ambiguous.) This
problem is not specific to Git: If we’d chosen a (functional)
graph database, the problem would have been very much the
same. The only difference would be in the low-level primitives
(nodes, edges, and properties instead of commits, branches,
tags, etc.).

Rather than trying to eliminate ambiguity (probably futile),
to embrace it and to make the semantic gap manageable is
perhaps the biggest challenge for Hoarde.

V. RELATED WORK

There is a large body of research in provenance and re-
producible analysis workflows. Simmhan et al. [32] provide a
survey of methods, representations, and tools for data prove-
nance in scientific research. Moreau et al. [33] organized a
provenance challenge to evaluate provenance systems in terms
of provenance capture, management, query and expressiveness
of provenance representations. The challenge identified a set
of common queries against provenance data. These queries
include those for tracking how a result item was generated,
searching provenance data based on (key,value) metadata, and
comparing provenance data for two runs. Moreau et al.[34]
proposed in 2011 a provenance model specification to support
exchange of provenance models, a common representation
upon which to build provenance tools, represent provenance
for any data whether it was generated through a computer algo-
rithm or another mechanism, and rules for making inferences
on provenance information. Gil et al. [35] describe an ontology
for capturing metadata about scientific software. Oliveira et

al. [36] propose a framework for analysis of data provenance.
The framework provides support for provenance data capture,
storage and inference, graph analysis, and visualization. Gil
et al. [37] describe a software metadata registry so that
scientists can identify, understand, assess software of interest,
and can execute and update the software. Miao et al. [38]
present a provenance and metadata management framework
for collaborative data science workflows. This framework is
designed to capture version lineages of artifacts (data, scripts,
and results), workflow provenance, context metadata about
artifacts, and data provenance. A prototype of the framework
is implemented using git and Neo4j. The prototype provides
tools for collecting provenance and metadata and for querying
the provenance information.

Murta and Pimentel et al. [31], [39] describe a tool that
captures provenance information from python scripts. The tool
can capture different types of provenance using software engi-
neering techniques such as syntax tree analysis and profiling. It
provides support for graph-based and query-based analysis of
provenance information. McPhillips et al. [40] propose a tool
that allows users to annotate scripts so computational modules
and workflow are explicitly represented. The tool captures
the workflow by analyzing the annotations and facilitates a
workflow-like visualization of the scripts.

There also has been work on methods and systems for meta-
data management and versioning. Scott et al. [30] describe an
architecture to manage key-value metadata for data elements
in a revision control system. They store and manage metadata
and data files in a git repository. They use a separate branch
for metadata files, allowing decentralized edits to metadata
without touching data files. They define a set of rules for
commits, branching, and merging to capture and propagate
changes in metadata. Prabhune et al. [41] present a metadata
management system designed to handle heterogeneous meta-
data models using a NoSQL database and RDF triple store.
The system implements a metadata schema registry, workflow
provenance management using ProvONE provenance model,
and mechanisms for metadata quality control, and handling of
dynamic metadata entries and changes in metadata. Bhardwaj
et al. [42], [43] present a platform that allows users to version,
split/merge, search and difference collections of datasets and
carry out collaborative data analysis. Their system incorporates
methods to handle large volumes of datasets and dataset
versions and query support for analyzing differences between
dataset versions and search for dataset versions of interest.
Maddox et al. [44] propose a relational database branching
system, called Decibel, to support versioning of datasets
for concurrent analysis, integration, processing, and curation
across teams. Decibel implements a relational database storage
system with version control capabilities. Chavan et al. [45]
present a system for versioning and provenance management
in studies where data are collected or generated from different
sources and by different teams (or sub-teams). They propose
a query language to enable queries on versioning and prove-
nance information. Bhattacherjee and Deshpande [46] describe
a system for storage and query of versions of a dataset.

Their system implements optimizations to efficiently store and
query a large collection of versions of documents/records in a
distributed environment.

VI. CONCLUSION

Starting from a set of experiences with building and manag-
ing collections of self-describing data sets, we have motivated
a different abstraction layer for collection and managing
provenance and associated metadata. Moving from “piles of
files” to a coherent collection access interface is intended to
give users access to richer sets of provenance and context
information, without the additional time investment associated
with populating most existing provenance systems.

We have introduced the Hoarde abstraction as a way to
envision constructing such a thin layer for dealing with large
collections of data. Although our broad vision is still in its
early stages, we have drawn a few key conclusions from our
early work: provenance tracking by itself (and its associated
system implementation) is not sufficient to answer all of
the interesting questions that arise, and embedding metadata
alongside data in self-describing formats offers a strong ad-
vantage for later reuse, validation, and accessibility of data.

Adding semantics to data collections is a useful step, but
we want classes of semantics so that we aren’t creating
specialized, bespoke approaches for each data collection. This
can be extended in many ways depending on whether the
relevant focus is bringing existing data collections into an
active form, or if it is capturing online and traditional workflow
provenance for future reuse and categorization of intermediate
results. In either case, turning the data hoard into a horde of
opportunities for getting your questions answered lies at the
core of exploiting the extreme scale data of the present and
the future.

ACKNOWLEDGMENT

Without the continued support from the Department of
Energy’s Office of Advanced Scientific Computing Research,
the projects upon which this future vision rests would not
be possible. Additionally, support from the DOE computing
facilities in Oak Ridge and NERSC, as well as the National
Science Foundation, were also critical.

REFERENCES

[11 Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453-1473, may 2014. [Online].
Available: http://doi.wiley.com/10.1002/cpe.3125

[2] G. Eisenhauer, M. Wolf, H. Abbasi, S. Klasky, and K. Schwan, “A type
system for high performance communication and computation,” in 2011
IEEE Seventh International Conference on e-Science Workshops, Dec
2011, pp. 183-190.

[3] P. Widener, G. Eisenhauer, K. Schwan, and F. E. Bustamante,
“Open metadata formats: Efficient xml-based communication for high
performance computing,” Cluster Computing, vol. 5, no. 3, pp. 315-324,
Jul 2002. [Online]. Available: https://doi.org/10.1023/A:1015637623058

[4]

[51

[6]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Tchoua, J. Choi, S. Klasky, Q. Liu, J. Logan, K. Moreland, J. Mu,
M. Parashar, N. Podhorszki, D. Pugmire, and M. Wolf, “Adios visual-
ization schema: A first step towards improving interdisciplinary collabo-
ration in high performance computing,” in 2013 IEEE 9th International
Conference on e-Science, Oct 2013, pp. 27-34.

C. Wood, S. Sane, D. Ellsworth, A. Gimenez, K. Huck, T. Gamblin, and
A. Malony, “A scalable observation system for introspection and in situ
analytics,” in 2016 5th Workshop on Extreme-Scale Programming Tools
(ESPT), Nov 2016, pp. 42-49.

J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S.-H. Ku,
Q. Liu, X. Ma, M. Parashar et al., “Skel: generative software for produc-
ing skeletal i/o applications,” in e-Science Workshops (eScienceW), 2011
IEEE Seventh International Conference on. 1EEE, 2011, pp. 191-198.
U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie,
and E. W. Bethel, “The sensei generic in situ interface,” in
Proceedings of the 2Nd Workshop on In Situ Infrastructures for
Enabling Extreme-scale Analysis and Visualization, ser. ISAV ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 40—44. [Online]. Available:
https://doi.org/10.1109/ISAV.2016.13

S. Klasky, M. Wolf, M. Ainsworth, C. Atkins, J. Choi, G. Eisenhauer,
B. Geveci, W. Godoy, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan,
A. B. Maccabe, K. Mehta, G. Ostrouchov, M. Parashar, N. Podhorszki,
D. Pugmire, E. Suchyta, L. Wan, and R. Wang, “A view from ornl:
Scientific data research opportunities in the big data age,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), July 2018, pp. 1357-1368.

M. Pierre, M. Vouk, S. A. Klasky, R. B. Tchoua, and N. Podhorszki,
“Tracking files using the kepler provenance framework,” 1 2009.

M. A. Vouk, I. Altintas, R. Barreto, J. Blondin, Z. Cheng, T. Critchlow,
A. Khan, S. Klasky, J. Ligon, B. Ludaescher, P. A. Mouallem, S. Parker,
N. Podhorszki, A. Shoshani, and C. Silva, “Automation of network-based
scientific workflows,” in Grid-Based Problem Solving Environments,
P. W. Gaffney and J. C. T. Pool, Eds. Boston, MA: Springer US,
2007, pp. 35-61.

“The exascale computing project - co-design is
https://www.exascaleproject.org/co-design-is-key-to-ecps-holistic-
approach-to-capable-exascale-computing/.

A. Almgren, P. DeMar, J. Vetter, K. Riley, K. Antypas, D. Bard,
R. Coffey, E. Dart, S. Dosanjh, R. Gerber er al., “Advanced scientific
computing research exascale requirements review. an office of science
review sponsored by advanced scientific computing research, september
27-29, 2016, rockville, maryland,” Argonne National Lab.(ANL), Ar-
gonne, IL (United States). Argonne Leadership ..., Tech. Rep., 2017.
I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di et al., “Computing just
what you need: online data analysis and reduction at extreme scales,”
in European Conference on Parallel Processing. Springer, 2017, pp.
3-19.

J. Y. Choi, C.-S. Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta,
M. Ainsworth, B. Allen, F. Cappello, M. Churchill et al., “Coupling
exascale multiphysics applications: Methods and lessons learned,” in
2018 IEEE 14th International Conference on e-Science (e-Science).
IEEE, 2018, pp. 442-452.

J. Dominski, S.-H. Ku, C.-S. Chang, J. Choi, E. Suchyta, S. Parker,
S. Klasky, and A. Bhattacharjee, “A tight-coupling scheme sharing
minimum information across a spatial interface between gyrokinetic
turbulence codes,” arXiv preprint arXiv:1806.05251, 2018.

P. W. Hamilton, P. Bankhead, Y. Wang, R. Hutchinson, D. Kieran, D. G.
McArt, J. James, and M. Salto-Tellez, “Digital pathology and image
analysis in tissue biomarker research,” Methods, vol. 70, no. 1, pp. 59—
73, 2014.

A. Madabhushi, “Digital pathology image analysis: opportunities and
challenges,” Imaging in Medicine, vol. 1, no. 1, p. 07, 2009.

L. A. Cooper, A. B. Carter, A. B. Farris, F. Wang, J. Kong, D. A.
Gutman, P. Widener, T. C. Pan, S. R. Cholleti, A. Sharma et al., “Digital
pathology: Data-intensive frontier in medical imaging,” Proceedings of
the IEEE, vol. 100, no. 4, pp. 991-1003, 2012.

J. Saltz, R. Gupta, L. Hou, T. Kurc, P. Singh, V. Nguyen, D. Sama-
ras, K. R. Shroyer, T. Zhao, R. Batiste er al., “Spatial organization
and molecular correlation of tumor-infiltrating lymphocytes using deep
learning on pathology images,” Cell reports, vol. 23, no. 1, p. 181, 2018.
P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gutman, J. S. Barnholtz-
Sloan, J. E. V. Vega, D. J. Brat, and L. A. Cooper, “Predicting cancer

key,”

(21]

[22]
[23]

[24]

(25]

[26]

[27]

(28]

[29]
(30]

[31]

(32]

(33]

[34]

(35]

[36]

[40]

[41]

[42]

[43]

outcomes from histology and genomics using convolutional networks,”
Proceedings of the National Academy of Sciences, p. 201717139, 2018.
M. Mustra, K. Delac, and M. Grgic, “Overview of the dicom standard,”
in ELMAR, 2008. 50th International Symposium, vol. 1. IEEE, 2008,
pp. 39-44.

D. A. Clunie, DICOM structured reporting. PixelMed Publishing, 2000.
R. Singh, L. Chubb, L. Pantanowitz, and A. Parwani, “Standardization
in digital pathology: Supplement 145 of the dicom standards,” Journal
of pathology informatics, vol. 2, 2011.

S. Jodogne, E. Lenaerts, L. Marquet, C. Erpicum, R. Greimers, P. Gillet,
R. Hustinx, and P. Delvenne, “Open implementation of dicom for
whole-slide microscopic imaging,” in Proceedings,-12th International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (Volume 6), 2017, pp. 81-87.

“FY 2018 Stockpile Stewardship and Management Plan,”
https://www.energy.gov/nnsa/downloads/stockpile-stewardship-and-
management-plan-ssmp.

S. Panda, M. Rao, P. Thenkabail, and J. E. Fitzerald, Remotely Sensed
Data Characterization, Classification, and Accuracies. CRC Press, 10
2015.

M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan, “Service
augmentation for high end interactive data services,” in 2005 IEEE
International Conference on Cluster Computing, Sep. 2005, pp. 1-11.
P. Nillson, “Git is a purely functional data structure,”
https://blog.jayway.com/2013/03/03/git-is-a-purely-functional-data-
structure/, 2013.

B. Lynn, “Git magic,” 2007, [Online; accessed 20-March-2018]. [On-
line]. Available: http://www-cs-students.stanford.edu/~blynn/gitmagic/
M. Scott, S. J. Johnston, and S. J. Cox, “Metagit: Decentralised metadata
management with git,” Information Systems, vol. 65, pp. 78-92, 2017.
L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire, “noWork-
flow: capturing and analyzing provenance of scripts,” in International
Provenance and Annotation Workshop. Springer, 2014, pp. 71-83.

Y. L. Simmbhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM Sigmod Record, vol. 34, no. 3, pp. 31-36, 2005.
L. Moreau, B. Ludischer, 1. Altintas, R. S. Barga, S. Bowers, S. Calla-
han, G. Chin Jr, B. Clifford, S. Cohen, S. Cohen-Boulakia et al., “Special
issue: The first provenance challenge,” Concurrency and computation:
practice and experience, vol. 20, no. 5, pp. 409—418, 2008.

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The open provenance
model core specification (v1. 1),” Future generation computer systems,
vol. 27, no. 6, pp. 743-756, 2011.

Y. Gil, V. Ratnakar, and D. Garijo, “Ontosoft: Capturing scientific
software metadata,” in Proceedings of the 8th International Conference
on Knowledge Capture. ACM, 2015, p. 32.

W. Oliveira, L. M. Ambrésio, R. Braga, V. Stréele, J. M. David, and
E. Campos, “A framework for provenance analysis and visualization,”
Procedia Computer Science, vol. 108, pp. 1592-1601, 2017.

Y. Gil, D. Garijo, S. Mishra, and V. Ratnakar, “Ontosoft: A distributed
semantic registry for scientific software,” in e-Science (e-Science), 2016
IEEE 12th International Conference on. IEEE, 2016, pp. 331-336.
H. Miao, A. Chavan, and A. Deshpande, “Provdb: Lifecycle manage-
ment of collaborative analysis workflows.” in HILDA@ SIGMOD, 2017,
pp. 7:1-7:6.

J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “noworkflow:
a tool for collecting, analyzing, and managing provenance from python
scripts,” Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1841—
1844, 2017.

T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame,
K. Bocinsky, Y. Cao, F. Chirigati, S. Dey, J. Freire et al., “Yesworkflow:
a user-oriented, language-independent tool for recovering workflow
information from scripts,” arXiv preprint arXiv:1502.02403, 2015.

A. Prabhune, R. Stotzka, V. Sakharkar, J. Hesser, and M. Gertz, “Meta-
store: an adaptive metadata management framework for heterogeneous
metadata models,” Distributed and Parallel Databases, vol. 36, no. 1,
pp. 153-194, 2018.

A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. El-
more, S. Madden, and A. G. Parameswaran, “Datahub: Collaborative
data science & dataset version management at scale,” arXiv preprint
arXiv:1409.0798, 2014.

A. Bhardwaj, A. Deshpande, A. J. Elmore, D. Karger, S. Madden,
A. Parameswaran, H. Subramanyam, E. Wu, and R. Zhang, “Collabora-

[44]

[45]

[46]

tive data analytics with datahub,” Proceedings of the VLDB Endowment,
vol. 8, no. 12, pp. 1916-1919, 2015.

M. Maddox, D. Goehring, A. J. Elmore, S. Madden, A. Parameswaran,
and A. Deshpande, “Decibel: The relational dataset branching system,”
Proceedings of the VLDB Endowment, vol. 9, no. 9, pp. 624-635, 2016.
A. Chavan, S. Huang, A. Deshpande, A. Elmore, S. Madden, and
A. Parameswaran, “Towards a unified query language for provenance
and versioning,” arXiv preprint arXiv:1506.04815, 2015.

S. Bhattacherjee and A. Deshpande, “Rstore: efficient multiversion doc-
ument management in the cloud,” in Proceedings of the 2017 Symposium
on Cloud Computing. ACM, 2017, pp. 658-658.

